# =================================================================== # # Copyright (c) 2022, Legrandin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== import unittest from binascii import unhexlify from Cryptodome.SelfTest.st_common import list_test_cases from Cryptodome.SelfTest.loader import load_test_vectors from Cryptodome.PublicKey import ECC from Cryptodome.PublicKey.ECC import EccPoint, _curves, EccKey from Cryptodome.Math.Numbers import Integer from Cryptodome.Hash import SHAKE128 class TestEccPoint_Ed25519(unittest.TestCase): Gxy = {"x": 15112221349535400772501151409588531511454012693041857206046113283949847762202, "y": 46316835694926478169428394003475163141307993866256225615783033603165251855960} G2xy = {"x": 24727413235106541002554574571675588834622768167397638456726423682521233608206, "y": 15549675580280190176352668710449542251549572066445060580507079593062643049417} G3xy = {"x": 46896733464454938657123544595386787789046198280132665686241321779790909858396, "y": 8324843778533443976490377120369201138301417226297555316741202210403726505172} pointG = EccPoint(Gxy['x'], Gxy['y'], curve="Ed25519") pointG2 = EccPoint(G2xy['x'], G2xy['y'], curve="Ed25519") pointG3 = EccPoint(G3xy['x'], G3xy['y'], curve="Ed25519") def test_init_xy(self): EccPoint(self.Gxy['x'], self.Gxy['y'], curve="Ed25519") # Neutral point pai = EccPoint(0, 1, curve="Ed25519") self.assertEqual(pai.x, 0) self.assertEqual(pai.y, 1) self.assertEqual(pai.xy, (0, 1)) # G bp = self.pointG.copy() self.assertEqual(bp.x, 15112221349535400772501151409588531511454012693041857206046113283949847762202) self.assertEqual(bp.y, 46316835694926478169428394003475163141307993866256225615783033603165251855960) self.assertEqual(bp.xy, (bp.x, bp.y)) # 2G bp2 = self.pointG2.copy() self.assertEqual(bp2.x, 24727413235106541002554574571675588834622768167397638456726423682521233608206) self.assertEqual(bp2.y, 15549675580280190176352668710449542251549572066445060580507079593062643049417) self.assertEqual(bp2.xy, (bp2.x, bp2.y)) # 5G EccPoint(x=33467004535436536005251147249499675200073690106659565782908757308821616914995, y=43097193783671926753355113395909008640284023746042808659097434958891230611693, curve="Ed25519") # Catch if point is not on the curve self.assertRaises(ValueError, EccPoint, 34, 35, curve="Ed25519") def test_set(self): pointW = EccPoint(0, 1, curve="Ed25519") pointW.set(self.pointG) self.assertEqual(pointW.x, self.pointG.x) self.assertEqual(pointW.y, self.pointG.y) def test_copy(self): pointW = self.pointG.copy() self.assertEqual(pointW.x, self.pointG.x) self.assertEqual(pointW.y, self.pointG.y) def test_equal(self): pointH = self.pointG.copy() pointI = self.pointG2.copy() self.assertEqual(self.pointG, pointH) self.assertNotEqual(self.pointG, pointI) def test_pai(self): pai = EccPoint(0, 1, curve="Ed25519") self.assertTrue(pai.is_point_at_infinity()) self.assertEqual(pai, pai.point_at_infinity()) def test_negate(self): negG = -self.pointG sum = self.pointG + negG self.assertTrue(sum.is_point_at_infinity()) def test_addition(self): self.assertEqual(self.pointG + self.pointG2, self.pointG3) self.assertEqual(self.pointG2 + self.pointG, self.pointG3) self.assertEqual(self.pointG2 + self.pointG.point_at_infinity(), self.pointG2) self.assertEqual(self.pointG.point_at_infinity() + self.pointG2, self.pointG2) G5 = self.pointG2 + self.pointG3 self.assertEqual(G5.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995) self.assertEqual(G5.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693) def test_inplace_addition(self): pointH = self.pointG.copy() pointH += self.pointG self.assertEqual(pointH, self.pointG2) pointH += self.pointG self.assertEqual(pointH, self.pointG3) pointH += self.pointG.point_at_infinity() self.assertEqual(pointH, self.pointG3) def test_doubling(self): pointH = self.pointG.copy() pointH.double() self.assertEqual(pointH.x, self.pointG2.x) self.assertEqual(pointH.y, self.pointG2.y) # 2*0 pai = self.pointG.point_at_infinity() pointR = pai.copy() pointR.double() self.assertEqual(pointR, pai) def test_scalar_multiply(self): d = 0 pointH = d * self.pointG self.assertEqual(pointH.x, 0) self.assertEqual(pointH.y, 1) d = 1 pointH = d * self.pointG self.assertEqual(pointH.x, self.pointG.x) self.assertEqual(pointH.y, self.pointG.y) d = 2 pointH = d * self.pointG self.assertEqual(pointH.x, self.pointG2.x) self.assertEqual(pointH.y, self.pointG2.y) d = 3 pointH = d * self.pointG self.assertEqual(pointH.x, self.pointG3.x) self.assertEqual(pointH.y, self.pointG3.y) d = 4 pointH = d * self.pointG self.assertEqual(pointH.x, 14582954232372986451776170844943001818709880559417862259286374126315108956272) self.assertEqual(pointH.y, 32483318716863467900234833297694612235682047836132991208333042722294373421359) d = 5 pointH = d * self.pointG self.assertEqual(pointH.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995) self.assertEqual(pointH.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693) d = 10 pointH = d * self.pointG self.assertEqual(pointH.x, 43500613248243327786121022071801015118933854441360174117148262713429272820047) self.assertEqual(pointH.y, 45005105423099817237495816771148012388779685712352441364231470781391834741548) d = 20 pointH = d * self.pointG self.assertEqual(pointH.x, 46694936775300686710656303283485882876784402425210400817529601134760286812591) self.assertEqual(pointH.y, 8786390172762935853260670851718824721296437982862763585171334833968259029560) d = 255 pointH = d * self.pointG self.assertEqual(pointH.x, 36843863416400016952258312492144504209624961884991522125275155377549541182230) self.assertEqual(pointH.y, 22327030283879720808995671630924669697661065034121040761798775626517750047180) d = 256 pointH = d * self.pointG self.assertEqual(pointH.x, 42740085206947573681423002599456489563927820004573071834350074001818321593686) self.assertEqual(pointH.y, 6935684722522267618220753829624209639984359598320562595061366101608187623111) def test_sizes(self): self.assertEqual(self.pointG.size_in_bits(), 255) self.assertEqual(self.pointG.size_in_bytes(), 32) class TestEccKey_Ed25519(unittest.TestCase): def test_private_key(self): seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60") Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046 Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807 key = EccKey(curve="Ed25519", seed=seed) self.assertEqual(key.seed, seed) self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720) self.assertTrue(key.has_private()) self.assertEqual(key.pointQ.x, Px) self.assertEqual(key.pointQ.y, Py) point = EccPoint(Px, Py, "ed25519") key = EccKey(curve="Ed25519", seed=seed, point=point) self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720) self.assertTrue(key.has_private()) self.assertEqual(key.pointQ, point) # Other names key = EccKey(curve="ed25519", seed=seed) # Must not accept d parameter self.assertRaises(ValueError, EccKey, curve="ed25519", d=1) def test_public_key(self): point = EccPoint(_curves['ed25519'].Gx, _curves['ed25519'].Gy, curve='ed25519') key = EccKey(curve="ed25519", point=point) self.assertFalse(key.has_private()) self.assertEqual(key.pointQ, point) def test_public_key_derived(self): priv_key = EccKey(curve="ed25519", seed=b'H'*32) pub_key = priv_key.public_key() self.assertFalse(pub_key.has_private()) self.assertEqual(priv_key.pointQ, pub_key.pointQ) def test_invalid_seed(self): self.assertRaises(ValueError, lambda: EccKey(curve="ed25519", seed=b'H' * 31)) def test_equality(self): private_key = ECC.construct(seed=b'H'*32, curve="Ed25519") private_key2 = ECC.construct(seed=b'H'*32, curve="ed25519") private_key3 = ECC.construct(seed=b'C'*32, curve="Ed25519") public_key = private_key.public_key() public_key2 = private_key2.public_key() public_key3 = private_key3.public_key() self.assertEqual(private_key, private_key2) self.assertNotEqual(private_key, private_key3) self.assertEqual(public_key, public_key2) self.assertNotEqual(public_key, public_key3) self.assertNotEqual(public_key, private_key) def test_name_consistency(self): key = ECC.generate(curve='ed25519') self.assertIn("curve='Ed25519'", repr(key)) self.assertEqual(key.curve, 'Ed25519') self.assertEqual(key.public_key().curve, 'Ed25519') class TestEccModule_Ed25519(unittest.TestCase): def test_generate(self): key = ECC.generate(curve="Ed25519") self.assertTrue(key.has_private()) point = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, curve="Ed25519") * key.d self.assertEqual(key.pointQ, point) # Always random key2 = ECC.generate(curve="Ed25519") self.assertNotEqual(key, key2) # Other names ECC.generate(curve="Ed25519") # Random source key1 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read) key2 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read) self.assertEqual(key1, key2) def test_construct(self): seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60") Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046 Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807 d = 36144925721603087658594284515452164870581325872720374094707712194495455132720 point = EccPoint(Px, Py, curve="Ed25519") # Private key only key = ECC.construct(curve="Ed25519", seed=seed) self.assertEqual(key.pointQ, point) self.assertTrue(key.has_private()) # Public key only key = ECC.construct(curve="Ed25519", point_x=Px, point_y=Py) self.assertEqual(key.pointQ, point) self.assertFalse(key.has_private()) # Private and public key key = ECC.construct(curve="Ed25519", seed=seed, point_x=Px, point_y=Py) self.assertEqual(key.pointQ, point) self.assertTrue(key.has_private()) # Other names key = ECC.construct(curve="ed25519", seed=seed) def test_negative_construct(self): coord = dict(point_x=10, point_y=4) coordG = dict(point_x=_curves['ed25519'].Gx, point_y=_curves['ed25519'].Gy) self.assertRaises(ValueError, ECC.construct, curve="Ed25519", **coord) self.assertRaises(ValueError, ECC.construct, curve="Ed25519", d=2, **coordG) self.assertRaises(ValueError, ECC.construct, curve="Ed25519", seed=b'H'*31) def get_tests(config={}): tests = [] tests += list_test_cases(TestEccPoint_Ed25519) tests += list_test_cases(TestEccKey_Ed25519) tests += list_test_cases(TestEccModule_Ed25519) return tests if __name__ == '__main__': def suite(): return unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite')