mirror of
https://gogs.blitter.com/RLabs/xs
synced 2024-08-14 10:26:42 +00:00
caac02a77b
2/2 Added vendor/ dir to lock down dependent pkg versions. The author of git.schwanenlied.me/yawning/{chacha20,newhope,kyber}.git has copied their repos to gitlab.com/yawning/ but some imports of chacha20 from newhope still inconsistently refer to git.schwanenlied.me/, breaking build. Licenses for chacha20 also changed from CC0 to AGPL, which may or may not be an issue. Until the two aforementioned issues are resolved, locking to last-good versions is probably the best way forward for now. To build with vendored deps, use make VENDOR=1 clean all
146 lines
5 KiB
Go
146 lines
5 KiB
Go
// poly.go - Kyber polynomial.
|
|
//
|
|
// To the extent possible under law, Yawning Angel has waived all copyright
|
|
// and related or neighboring rights to the software, using the Creative
|
|
// Commons "CC0" public domain dedication. See LICENSE or
|
|
// <http://creativecommons.org/publicdomain/zero/1.0/> for full details.
|
|
|
|
package kyber
|
|
|
|
import "golang.org/x/crypto/sha3"
|
|
|
|
// Elements of R_q = Z_q[X]/(X^n + 1). Represents polynomial coeffs[0] +
|
|
// X*coeffs[1] + X^2*xoeffs[2] + ... + X^{n-1}*coeffs[n-1].
|
|
type poly struct {
|
|
coeffs [kyberN]uint16
|
|
}
|
|
|
|
// Compression and subsequent serialization of a polynomial.
|
|
func (p *poly) compress(r []byte) {
|
|
var t [8]uint32
|
|
|
|
for i, k := 0, 0; i < kyberN; i, k = i+8, k+3 {
|
|
for j := 0; j < 8; j++ {
|
|
t[j] = uint32((((freeze(p.coeffs[i+j]) << 3) + kyberQ/2) / kyberQ) & 7)
|
|
}
|
|
|
|
r[k] = byte(t[0] | (t[1] << 3) | (t[2] << 6))
|
|
r[k+1] = byte((t[2] >> 2) | (t[3] << 1) | (t[4] << 4) | (t[5] << 7))
|
|
r[k+2] = byte((t[5] >> 1) | (t[6] << 2) | (t[7] << 5))
|
|
}
|
|
}
|
|
|
|
// De-serialization and subsequent decompression of a polynomial; approximate
|
|
// inverse of poly.compress().
|
|
func (p *poly) decompress(a []byte) {
|
|
for i, off := 0, 0; i < kyberN; i, off = i+8, off+3 {
|
|
p.coeffs[i+0] = ((uint16(a[off]&7) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+1] = (((uint16(a[off]>>3) & 7) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+2] = (((uint16(a[off]>>6) | (uint16(a[off+1]<<2) & 4)) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+3] = (((uint16(a[off+1]>>1) & 7) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+4] = (((uint16(a[off+1]>>4) & 7) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+5] = (((uint16(a[off+1]>>7) | (uint16(a[off+2]<<1) & 6)) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+6] = (((uint16(a[off+2]>>2) & 7) * kyberQ) + 4) >> 3
|
|
p.coeffs[i+7] = (((uint16(a[off+2] >> 5)) * kyberQ) + 4) >> 3
|
|
}
|
|
}
|
|
|
|
// Serialization of a polynomial.
|
|
func (p *poly) toBytes(r []byte) {
|
|
var t [8]uint16
|
|
|
|
for i := 0; i < kyberN/8; i++ {
|
|
for j := 0; j < 8; j++ {
|
|
t[j] = freeze(p.coeffs[8*i+j])
|
|
}
|
|
|
|
r[13*i+0] = byte(t[0] & 0xff)
|
|
r[13*i+1] = byte((t[0] >> 8) | ((t[1] & 0x07) << 5))
|
|
r[13*i+2] = byte((t[1] >> 3) & 0xff)
|
|
r[13*i+3] = byte((t[1] >> 11) | ((t[2] & 0x3f) << 2))
|
|
r[13*i+4] = byte((t[2] >> 6) | ((t[3] & 0x01) << 7))
|
|
r[13*i+5] = byte((t[3] >> 1) & 0xff)
|
|
r[13*i+6] = byte((t[3] >> 9) | ((t[4] & 0x0f) << 4))
|
|
r[13*i+7] = byte((t[4] >> 4) & 0xff)
|
|
r[13*i+8] = byte((t[4] >> 12) | ((t[5] & 0x7f) << 1))
|
|
r[13*i+9] = byte((t[5] >> 7) | ((t[6] & 0x03) << 6))
|
|
r[13*i+10] = byte((t[6] >> 2) & 0xff)
|
|
r[13*i+11] = byte((t[6] >> 10) | ((t[7] & 0x1f) << 3))
|
|
r[13*i+12] = byte(t[7] >> 5)
|
|
}
|
|
}
|
|
|
|
// De-serialization of a polynomial; inverse of poly.toBytes().
|
|
func (p *poly) fromBytes(a []byte) {
|
|
for i := 0; i < kyberN/8; i++ {
|
|
p.coeffs[8*i+0] = uint16(a[13*i+0]) | ((uint16(a[13*i+1]) & 0x1f) << 8)
|
|
p.coeffs[8*i+1] = (uint16(a[13*i+1]) >> 5) | (uint16(a[13*i+2]) << 3) | ((uint16(a[13*i+3]) & 0x03) << 11)
|
|
p.coeffs[8*i+2] = (uint16(a[13*i+3]) >> 2) | ((uint16(a[13*i+4]) & 0x7f) << 6)
|
|
p.coeffs[8*i+3] = (uint16(a[13*i+4]) >> 7) | (uint16(a[13*i+5]) << 1) | ((uint16(a[13*i+6]) & 0x0f) << 9)
|
|
p.coeffs[8*i+4] = (uint16(a[13*i+6]) >> 4) | (uint16(a[13*i+7]) << 4) | ((uint16(a[13*i+8]) & 0x01) << 12)
|
|
p.coeffs[8*i+5] = (uint16(a[13*i+8]) >> 1) | ((uint16(a[13*i+9]) & 0x3f) << 7)
|
|
p.coeffs[8*i+6] = (uint16(a[13*i+9]) >> 6) | (uint16(a[13*i+10]) << 2) | ((uint16(a[13*i+11]) & 0x07) << 10)
|
|
p.coeffs[8*i+7] = (uint16(a[13*i+11]) >> 3) | (uint16(a[13*i+12]) << 5)
|
|
}
|
|
}
|
|
|
|
// Convert 32-byte message to polynomial.
|
|
func (p *poly) fromMsg(msg []byte) {
|
|
for i, v := range msg[:SymSize] {
|
|
for j := 0; j < 8; j++ {
|
|
mask := -((uint16(v) >> uint(j)) & 1)
|
|
p.coeffs[8*i+j] = mask & ((kyberQ + 1) / 2)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert polynomial to 32-byte message.
|
|
func (p *poly) toMsg(msg []byte) {
|
|
for i := 0; i < SymSize; i++ {
|
|
msg[i] = 0
|
|
for j := 0; j < 8; j++ {
|
|
t := (((freeze(p.coeffs[8*i+j]) << 1) + kyberQ/2) / kyberQ) & 1
|
|
msg[i] |= byte(t << uint(j))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sample a polynomial deterministically from a seed and a nonce, with output
|
|
// polynomial close to centered binomial distribution with parameter eta.
|
|
func (p *poly) getNoise(seed []byte, nonce byte, eta int) {
|
|
extSeed := make([]byte, 0, SymSize+1)
|
|
extSeed = append(extSeed, seed...)
|
|
extSeed = append(extSeed, nonce)
|
|
|
|
buf := make([]byte, eta*kyberN/4)
|
|
sha3.ShakeSum256(buf, extSeed)
|
|
|
|
p.cbd(buf, eta)
|
|
}
|
|
|
|
// Computes negacyclic number-theoretic transform (NTT) of a polynomial in
|
|
// place; inputs assumed to be in normal order, output in bitreversed order.
|
|
func (p *poly) ntt() {
|
|
hardwareAccelImpl.nttFn(&p.coeffs)
|
|
}
|
|
|
|
// Computes inverse of negacyclic number-theoretic transform (NTT) of a
|
|
// polynomial in place; inputs assumed to be in bitreversed order, output in
|
|
// normal order.
|
|
func (p *poly) invntt() {
|
|
hardwareAccelImpl.invnttFn(&p.coeffs)
|
|
}
|
|
|
|
// Add two polynomials.
|
|
func (p *poly) add(a, b *poly) {
|
|
for i := range p.coeffs {
|
|
p.coeffs[i] = barrettReduce(a.coeffs[i] + b.coeffs[i])
|
|
}
|
|
}
|
|
|
|
// Subtract two polynomials.
|
|
func (p *poly) sub(a, b *poly) {
|
|
for i := range p.coeffs {
|
|
p.coeffs[i] = barrettReduce(a.coeffs[i] + 3*kyberQ - b.coeffs[i])
|
|
}
|
|
}
|