xs/vendor/git.schwanenlied.me/yawning/chacha20.git/chacha20.go
Russ Magee f5be3578a8 1/3 Updated Makefile to allow VENDOR flag (adds -vendor to version string)
2/3 Added vendor/ dir to lock down dependent pkg versions.
The author of git.schwanenlied.me/yawning/{chacha20,newhope,kyber}.git has copied
their repos to gitlab.com/yawning/ but some imports of chacha20 from newhope still
inconsistently refer to git.schwanenlied.me/, breaking build.
Licenses for chacha20 also changed from CC0 to AGPL, which may or may not be an
issue. Until the two aforementioned issues are resolved, locking to last-good
versions is probably the best way forward for now.

To build with vendored deps, use make VENDOR=1 clean all

3/3 Moved body of CI push script into bacillus/
2020-01-29 17:23:44 -08:00

273 lines
7 KiB
Go

// chacha20.go - A ChaCha stream cipher implementation.
//
// To the extent possible under law, Yawning Angel has waived all copyright
// and related or neighboring rights to chacha20, using the Creative
// Commons "CC0" public domain dedication. See LICENSE or
// <http://creativecommons.org/publicdomain/zero/1.0/> for full details.
package chacha20
import (
"crypto/cipher"
"encoding/binary"
"errors"
"math"
"runtime"
)
const (
// KeySize is the ChaCha20 key size in bytes.
KeySize = 32
// NonceSize is the ChaCha20 nonce size in bytes.
NonceSize = 8
// INonceSize is the IETF ChaCha20 nonce size in bytes.
INonceSize = 12
// XNonceSize is the XChaCha20 nonce size in bytes.
XNonceSize = 24
// HNonceSize is the HChaCha20 nonce size in bytes.
HNonceSize = 16
// BlockSize is the ChaCha20 block size in bytes.
BlockSize = 64
stateSize = 16
chachaRounds = 20
// The constant "expand 32-byte k" as little endian uint32s.
sigma0 = uint32(0x61707865)
sigma1 = uint32(0x3320646e)
sigma2 = uint32(0x79622d32)
sigma3 = uint32(0x6b206574)
)
var (
// ErrInvalidKey is the error returned when the key is invalid.
ErrInvalidKey = errors.New("key length must be KeySize bytes")
// ErrInvalidNonce is the error returned when the nonce is invalid.
ErrInvalidNonce = errors.New("nonce length must be NonceSize/INonceSize/XNonceSize bytes")
// ErrInvalidCounter is the error returned when the counter is invalid.
ErrInvalidCounter = errors.New("block counter is invalid (out of range)")
useUnsafe = false
usingVectors = false
blocksFn = blocksRef
)
// A Cipher is an instance of ChaCha20/XChaCha20 using a particular key and
// nonce.
type Cipher struct {
state [stateSize]uint32
buf [BlockSize]byte
off int
ietf bool
}
// Reset zeros the key data so that it will no longer appear in the process's
// memory.
func (c *Cipher) Reset() {
for i := range c.state {
c.state[i] = 0
}
for i := range c.buf {
c.buf[i] = 0
}
}
// XORKeyStream sets dst to the result of XORing src with the key stream. Dst
// and src may be the same slice but otherwise should not overlap.
func (c *Cipher) XORKeyStream(dst, src []byte) {
if len(dst) < len(src) {
src = src[:len(dst)]
}
for remaining := len(src); remaining > 0; {
// Process multiple blocks at once.
if c.off == BlockSize {
nrBlocks := remaining / BlockSize
directBytes := nrBlocks * BlockSize
if nrBlocks > 0 {
blocksFn(&c.state, src, dst, nrBlocks, c.ietf)
remaining -= directBytes
if remaining == 0 {
return
}
dst = dst[directBytes:]
src = src[directBytes:]
}
// If there's a partial block, generate 1 block of keystream into
// the internal buffer.
blocksFn(&c.state, nil, c.buf[:], 1, c.ietf)
c.off = 0
}
// Process partial blocks from the buffered keystream.
toXor := BlockSize - c.off
if remaining < toXor {
toXor = remaining
}
if toXor > 0 {
for i, v := range src[:toXor] {
dst[i] = v ^ c.buf[c.off+i]
}
dst = dst[toXor:]
src = src[toXor:]
remaining -= toXor
c.off += toXor
}
}
}
// KeyStream sets dst to the raw keystream.
func (c *Cipher) KeyStream(dst []byte) {
for remaining := len(dst); remaining > 0; {
// Process multiple blocks at once.
if c.off == BlockSize {
nrBlocks := remaining / BlockSize
directBytes := nrBlocks * BlockSize
if nrBlocks > 0 {
blocksFn(&c.state, nil, dst, nrBlocks, c.ietf)
remaining -= directBytes
if remaining == 0 {
return
}
dst = dst[directBytes:]
}
// If there's a partial block, generate 1 block of keystream into
// the internal buffer.
blocksFn(&c.state, nil, c.buf[:], 1, c.ietf)
c.off = 0
}
// Process partial blocks from the buffered keystream.
toCopy := BlockSize - c.off
if remaining < toCopy {
toCopy = remaining
}
if toCopy > 0 {
copy(dst[:toCopy], c.buf[c.off:c.off+toCopy])
dst = dst[toCopy:]
remaining -= toCopy
c.off += toCopy
}
}
}
// ReKey reinitializes the ChaCha20/XChaCha20 instance with the provided key
// and nonce.
func (c *Cipher) ReKey(key, nonce []byte) error {
if len(key) != KeySize {
return ErrInvalidKey
}
switch len(nonce) {
case NonceSize:
case INonceSize:
case XNonceSize:
var subkey [KeySize]byte
var subnonce [HNonceSize]byte
copy(subnonce[:], nonce[0:16])
HChaCha(key, &subnonce, &subkey)
key = subkey[:]
nonce = nonce[16:24]
defer func() {
for i := range subkey {
subkey[i] = 0
}
}()
default:
return ErrInvalidNonce
}
c.Reset()
c.state[0] = sigma0
c.state[1] = sigma1
c.state[2] = sigma2
c.state[3] = sigma3
c.state[4] = binary.LittleEndian.Uint32(key[0:4])
c.state[5] = binary.LittleEndian.Uint32(key[4:8])
c.state[6] = binary.LittleEndian.Uint32(key[8:12])
c.state[7] = binary.LittleEndian.Uint32(key[12:16])
c.state[8] = binary.LittleEndian.Uint32(key[16:20])
c.state[9] = binary.LittleEndian.Uint32(key[20:24])
c.state[10] = binary.LittleEndian.Uint32(key[24:28])
c.state[11] = binary.LittleEndian.Uint32(key[28:32])
c.state[12] = 0
if len(nonce) == INonceSize {
c.state[13] = binary.LittleEndian.Uint32(nonce[0:4])
c.state[14] = binary.LittleEndian.Uint32(nonce[4:8])
c.state[15] = binary.LittleEndian.Uint32(nonce[8:12])
c.ietf = true
} else {
c.state[13] = 0
c.state[14] = binary.LittleEndian.Uint32(nonce[0:4])
c.state[15] = binary.LittleEndian.Uint32(nonce[4:8])
c.ietf = false
}
c.off = BlockSize
return nil
}
// Seek sets the block counter to a given offset.
func (c *Cipher) Seek(blockCounter uint64) error {
if c.ietf {
if blockCounter > math.MaxUint32 {
return ErrInvalidCounter
}
c.state[12] = uint32(blockCounter)
} else {
c.state[12] = uint32(blockCounter)
c.state[13] = uint32(blockCounter >> 32)
}
c.off = BlockSize
return nil
}
// NewCipher returns a new ChaCha20/XChaCha20 instance.
func NewCipher(key, nonce []byte) (*Cipher, error) {
c := new(Cipher)
if err := c.ReKey(key, nonce); err != nil {
return nil, err
}
return c, nil
}
// HChaCha is the HChaCha20 hash function used to make XChaCha.
func HChaCha(key []byte, nonce *[HNonceSize]byte, out *[32]byte) {
var x [stateSize]uint32 // Last 4 slots unused, sigma hardcoded.
x[0] = binary.LittleEndian.Uint32(key[0:4])
x[1] = binary.LittleEndian.Uint32(key[4:8])
x[2] = binary.LittleEndian.Uint32(key[8:12])
x[3] = binary.LittleEndian.Uint32(key[12:16])
x[4] = binary.LittleEndian.Uint32(key[16:20])
x[5] = binary.LittleEndian.Uint32(key[20:24])
x[6] = binary.LittleEndian.Uint32(key[24:28])
x[7] = binary.LittleEndian.Uint32(key[28:32])
x[8] = binary.LittleEndian.Uint32(nonce[0:4])
x[9] = binary.LittleEndian.Uint32(nonce[4:8])
x[10] = binary.LittleEndian.Uint32(nonce[8:12])
x[11] = binary.LittleEndian.Uint32(nonce[12:16])
hChaChaRef(&x, out)
}
func init() {
switch runtime.GOARCH {
case "386", "amd64":
// Abuse unsafe to skip calling binary.LittleEndian.PutUint32
// in the critical path. This is a big boost on systems that are
// little endian and not overly picky about alignment.
useUnsafe = true
}
}
var _ cipher.Stream = (*Cipher)(nil)