mirror of
https://gogs.blitter.com/RLabs/xs
synced 2024-08-14 10:26:42 +00:00
189 lines
5.8 KiB
Go
189 lines
5.8 KiB
Go
|
//+build !noasm
|
||
|
//+build !appengine
|
||
|
//+build !gccgo
|
||
|
|
||
|
// Copyright 2015, Klaus Post, see LICENSE for details.
|
||
|
// Copyright 2019, Minio, Inc.
|
||
|
|
||
|
package reedsolomon
|
||
|
|
||
|
//go:noescape
|
||
|
func _galMulAVX512Parallel82(in, out [][]byte, matrix *[matrixSize82]byte, addTo bool)
|
||
|
|
||
|
//go:noescape
|
||
|
func _galMulAVX512Parallel84(in, out [][]byte, matrix *[matrixSize84]byte, addTo bool)
|
||
|
|
||
|
func init() {
|
||
|
amd64 = true
|
||
|
}
|
||
|
|
||
|
const (
|
||
|
dimIn = 8 // Number of input rows processed simultaneously
|
||
|
dimOut82 = 2 // Number of output rows processed simultaneously for x2 routine
|
||
|
dimOut84 = 4 // Number of output rows processed simultaneously for x4 routine
|
||
|
matrixSize82 = (16 + 16) * dimIn * dimOut82 // Dimension of slice of matrix coefficient passed into x2 routine
|
||
|
matrixSize84 = (16 + 16) * dimIn * dimOut84 // Dimension of slice of matrix coefficient passed into x4 routine
|
||
|
)
|
||
|
|
||
|
// Construct block of matrix coefficients for 2 outputs rows in parallel
|
||
|
func setupMatrix82(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize82]byte) {
|
||
|
offset := 0
|
||
|
for c := inputOffset; c < inputOffset+dimIn; c++ {
|
||
|
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
|
||
|
if c < len(matrixRows[iRow]) {
|
||
|
coeff := matrixRows[iRow][c]
|
||
|
copy(matrix[offset*32:], mulTableLow[coeff][:])
|
||
|
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
|
||
|
} else {
|
||
|
// coefficients not used for this input shard (so null out)
|
||
|
v := matrix[offset*32 : offset*32+32]
|
||
|
for i := range v {
|
||
|
v[i] = 0
|
||
|
}
|
||
|
}
|
||
|
offset += dimIn
|
||
|
if offset >= dimIn*dimOut82 {
|
||
|
offset -= dimIn*dimOut82 - 1
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Construct block of matrix coefficients for 4 outputs rows in parallel
|
||
|
func setupMatrix84(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize84]byte) {
|
||
|
offset := 0
|
||
|
for c := inputOffset; c < inputOffset+dimIn; c++ {
|
||
|
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
|
||
|
if c < len(matrixRows[iRow]) {
|
||
|
coeff := matrixRows[iRow][c]
|
||
|
copy(matrix[offset*32:], mulTableLow[coeff][:])
|
||
|
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
|
||
|
} else {
|
||
|
// coefficients not used for this input shard (so null out)
|
||
|
v := matrix[offset*32 : offset*32+32]
|
||
|
for i := range v {
|
||
|
v[i] = 0
|
||
|
}
|
||
|
}
|
||
|
offset += dimIn
|
||
|
if offset >= dimIn*dimOut84 {
|
||
|
offset -= dimIn*dimOut84 - 1
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Invoke AVX512 routine for 2 output rows in parallel
|
||
|
func galMulAVX512Parallel82(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) {
|
||
|
done := len(in[0])
|
||
|
if done == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
inputEnd := inputOffset + dimIn
|
||
|
if inputEnd > len(in) {
|
||
|
inputEnd = len(in)
|
||
|
}
|
||
|
outputEnd := outputOffset + dimOut82
|
||
|
if outputEnd > len(out) {
|
||
|
outputEnd = len(out)
|
||
|
}
|
||
|
|
||
|
matrix82 := [matrixSize82]byte{}
|
||
|
setupMatrix82(matrixRows, inputOffset, outputOffset, &matrix82)
|
||
|
addTo := inputOffset != 0 // Except for the first input column, add to previous results
|
||
|
_galMulAVX512Parallel82(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix82, addTo)
|
||
|
|
||
|
done = (done >> 6) << 6
|
||
|
if len(in[0])-done == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for c := inputOffset; c < inputOffset+dimIn; c++ {
|
||
|
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
|
||
|
if c < len(matrixRows[iRow]) {
|
||
|
mt := mulTable[matrixRows[iRow][c]][:256]
|
||
|
for i := done; i < len(in[0]); i++ {
|
||
|
if c == 0 { // only set value for first input column
|
||
|
out[iRow][i] = mt[in[c][i]]
|
||
|
} else { // and add for all others
|
||
|
out[iRow][i] ^= mt[in[c][i]]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Invoke AVX512 routine for 4 output rows in parallel
|
||
|
func galMulAVX512Parallel84(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) {
|
||
|
done := len(in[0])
|
||
|
if done == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
inputEnd := inputOffset + dimIn
|
||
|
if inputEnd > len(in) {
|
||
|
inputEnd = len(in)
|
||
|
}
|
||
|
outputEnd := outputOffset + dimOut84
|
||
|
if outputEnd > len(out) {
|
||
|
outputEnd = len(out)
|
||
|
}
|
||
|
|
||
|
matrix84 := [matrixSize84]byte{}
|
||
|
setupMatrix84(matrixRows, inputOffset, outputOffset, &matrix84)
|
||
|
addTo := inputOffset != 0 // Except for the first input column, add to previous results
|
||
|
_galMulAVX512Parallel84(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix84, addTo)
|
||
|
|
||
|
done = (done >> 6) << 6
|
||
|
if len(in[0])-done == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for c := inputOffset; c < inputOffset+dimIn; c++ {
|
||
|
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
|
||
|
if c < len(matrixRows[iRow]) {
|
||
|
mt := mulTable[matrixRows[iRow][c]][:256]
|
||
|
for i := done; i < len(in[0]); i++ {
|
||
|
if c == 0 { // only set value for first input column
|
||
|
out[iRow][i] = mt[in[c][i]]
|
||
|
} else { // and add for all others
|
||
|
out[iRow][i] ^= mt[in[c][i]]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Perform the same as codeSomeShards, but taking advantage of
|
||
|
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
|
||
|
func (r reedSolomon) codeSomeShardsAvx512(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
||
|
outputRow := 0
|
||
|
// First process (multiple) batches of 4 output rows in parallel
|
||
|
for ; outputRow+dimOut84 <= len(outputs); outputRow += dimOut84 {
|
||
|
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
|
||
|
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow)
|
||
|
}
|
||
|
}
|
||
|
// Then process a (single) batch of 2 output rows in parallel
|
||
|
if outputRow+dimOut82 <= len(outputs) {
|
||
|
// fmt.Println(outputRow, len(outputs))
|
||
|
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
|
||
|
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow)
|
||
|
}
|
||
|
outputRow += dimOut82
|
||
|
}
|
||
|
// Lastly, we may have a single output row left (for uneven parity)
|
||
|
if outputRow < len(outputs) {
|
||
|
for c := 0; c < r.DataShards; c++ {
|
||
|
if c == 0 {
|
||
|
galMulSlice(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o)
|
||
|
} else {
|
||
|
galMulSliceXor(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|