ED_LRR/src/main.rs

711 lines
22 KiB
Rust

extern crate csv;
extern crate serde;
extern crate structopt;
#[macro_use]
extern crate serde_derive;
extern crate fnv;
extern crate humantime;
extern crate permutohedron;
use core::cmp::Ordering;
use fnv::{FnvHashMap, FnvHashSet};
use humantime::format_duration;
use permutohedron::LexicalPermutation;
use rstar::{PointDistance, RTree, RTreeObject, AABB};
use std::collections::VecDeque;
use std::hash::{Hash, Hasher};
use std::io::Write;
use std::path::PathBuf;
use std::str::FromStr;
use std::time::Instant;
use structopt::StructOpt;
#[derive(Debug, Deserialize)]
struct Record {
id: i64,
star_type: String,
name: String,
mult: f32,
x: f32,
y: f32,
z: f32,
}
#[derive(Debug, Clone)]
struct System {
id: i64,
star_type: String,
name: String,
mult: f32,
}
#[derive(Debug, Clone, Copy)]
struct Point {
id: i64,
x: f32,
y: f32,
z: f32,
}
#[derive(Debug)]
enum Mode {
BFS,
Greedy,
AStar,
}
impl FromStr for Mode {
type Err = String;
fn from_str(s: &str) -> Result<Mode, String> {
match s {
"bfs" => Ok(Mode::BFS),
"greedy" => Ok(Mode::Greedy),
"astar" => Ok(Mode::AStar),
_ => Err("Invalid Mode".to_string()),
}
}
}
#[derive(Debug, StructOpt)]
#[structopt(
name = "ed_lrr",
about = "Elite: Dangerous Long-Range Router",
rename_all = "kebab-case"
)]
/// Plots a route through multiple systems using breadth-first search (Currently needs a lot of RAM (about 6GB), sorry)
struct Opt {
#[structopt(short, long = "range")]
/// Jump Range
range: f32,
#[structopt(
parse(from_os_str),
short = "f",
long = "path",
default_value = "./stars.csv"
)]
/// Path to stars.csv
///
/// Generate using process.py (https://gitlab.com/Earthnuker/ed_lrr/raw/master/dumps/process.py)
file_path: PathBuf,
#[structopt(short = "p", long = "permute", conflicts_with = "full_permute")]
/// Permute intermediate hops to find shortest route
permute: bool,
#[structopt(short = "fp", long = "full_permute", conflicts_with = "permute")]
/// Permute all hops to find shortest route
full_permute: bool,
#[structopt(short = "g", long = "factor")]
/// Greedyness factor for A-Star (0=BFS, inf=Greedy)
factor: Option<f32>,
#[structopt(
short,
long = "mode",
raw(possible_values = "&[\"bfs\", \"greedy\",\"astar\"]")
)]
/// Search mode
///
/**
- BFS is guaranteed to find the shortest route but very slow
- Greedy is a lot faster but will probably not find the shortest route
- A-Star is a good middle ground between speed and accuracy
*/
mode: Mode,
/// Systems to route through
systems: Vec<String>,
}
fn dist(p1: &[f32; 3], p2: &[f32; 3]) -> f32 {
let dx = p1[0] - p2[0];
let dy = p1[1] - p2[1];
let dz = p1[2] - p2[2];
return (dx * dx + dy * dy + dz * dz).sqrt();
}
fn fcmp(a: &f32, b: &f32) -> Ordering {
match (a, b) {
(x, y) if x.is_nan() && y.is_nan() => Ordering::Equal,
(x, _) if x.is_nan() => Ordering::Greater,
(_, y) if y.is_nan() => Ordering::Less,
(..) => a.partial_cmp(&b).unwrap(),
}
}
impl Point {
pub fn dist2(&self, p: &[f32; 3]) -> f32 {
let dx = self.x - p[0];
let dy = self.y - p[1];
let dz = self.z - p[2];
return dx * dx + dy * dy + dz * dz;
}
pub fn distp(&self, p: &Point) -> f32 {
return self.distp2(p).sqrt();
}
pub fn distp2(&self, p: &Point) -> f32 {
return self.dist2(&[p.x, p.y, p.z]);
}
}
impl PartialEq for Point {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Point {}
impl Hash for Point {
fn hash<H: Hasher>(&self, state: &mut H) {
self.id.hash(state);
}
}
impl RTreeObject for Point {
type Envelope = AABB<[f32; 3]>;
fn envelope(&self) -> Self::Envelope {
return AABB::from_point([self.x, self.y, self.z]);
}
}
impl PointDistance for Point {
fn distance_2(&self, point: &[f32; 3]) -> f32 {
return self.dist2(&point);
}
}
struct Router {
tree: RTree<Point>,
systems: FnvHashMap<i64, System>,
scoopable: FnvHashSet<i64>,
}
impl Router {
pub fn new(path: &PathBuf) -> Self {
let mut scoopable = FnvHashSet::default();
let mut systems: FnvHashMap<i64, System> = FnvHashMap::default();
let mut reader = csv::ReaderBuilder::new()
.has_headers(false)
.from_path(path)
.unwrap_or_else(|e| {
println!("Error loading {}: {}", path.to_str().unwrap(), e);
std::process::exit(1);
});
println!("Loading {}...", path.to_str().unwrap());
let points = reader
.deserialize()
.map(|res: Result<Record, _>| {
let sys = res.unwrap();
systems.insert(
sys.id,
System {
id: sys.id,
star_type: sys.star_type.clone(),
name: sys.name,
mult: sys.mult,
},
);
if sys.mult > 1.0f32 {
scoopable.insert(sys.id);
} else {
for c in "KGBFOAM".chars() {
if sys.star_type.starts_with(c) {
scoopable.insert(sys.id);
break;
}
}
}
return Point {
x: sys.x,
y: sys.y,
z: sys.z,
id: sys.id,
};
})
.collect();
return Self {
tree: RTree::<Point>::bulk_load(points),
systems,
scoopable,
};
}
fn preload_points(&self) -> FnvHashMap<i64, &Point> {
let mut ret = FnvHashMap::default();
for point in &self.tree {
ret.insert(point.id, point);
}
return ret;
}
fn closest(&self, point: &[f32; 3]) -> &Point {
return self.tree.nearest_neighbor(point).unwrap();
}
fn points_in_sphere(&self, center: &[f32; 3], radius: f32) -> impl Iterator<Item = &Point> {
return self.tree.locate_within_distance(*center, radius * radius);
}
fn mult(&self, id: i64) -> f32 {
if let Some(sys) = self.systems.get(&id) {
return sys.mult;
};
return 1.0;
}
fn neighbours(&self, sys: &Point, r: f32) -> impl Iterator<Item = &Point> {
return self.points_in_sphere(&[sys.x, sys.y, sys.z], self.mult(sys.id) * r);
}
fn valid(&self, sys: &Point) -> bool {
return self.scoopable.contains(&sys.id);
}
pub fn best_name_multiroute(
&self,
waypoints: &Vec<String>,
range: f32,
full: bool,
mode: Mode,
factor: f32,
) -> Vec<(&System, &Point)> {
let mut best_score: f32 = std::f32::MAX;
let mut waypoints = waypoints.clone();
let mut best_permutation_waypoints = waypoints.clone();
let first = waypoints.first().cloned();
let last = waypoints.last().cloned();
let t_start = Instant::now();
println!("Finding best permutation of hops...");
while waypoints.prev_permutation() {}
loop {
let c_first = waypoints.first().cloned();
let c_last = waypoints.last().cloned();
if full || ((c_first == first) && (c_last == last)) {
let mut total_d = 0.0;
for pair in waypoints.windows(2) {
match pair {
[src, dst] => {
let (src, dst) = (self.name_to_point(&src), self.name_to_point(&dst));
total_d += src.distp2(dst);
}
_ => panic!("Invalid routing parameters!"),
}
}
if total_d < best_score {
best_score = total_d;
best_permutation_waypoints = waypoints.clone();
}
}
if !waypoints.next_permutation() {
break;
}
}
println!("Done in {}!", format_duration(t_start.elapsed()));
println!("Best permutation: {:?}", best_permutation_waypoints);
return self.name_multiroute(&best_permutation_waypoints, range, mode, factor);
}
pub fn name_multiroute(
&self,
waypoints: &Vec<String>,
range: f32,
mode: Mode,
factor: f32,
) -> Vec<(&System, &Point)> {
let mut coords = Vec::new();
for p in waypoints {
let p = self.name_to_point(p);
let s = [p.x, p.y, p.z];
coords.push(s);
}
return self.multiroute(coords.as_slice(), range, mode, factor);
}
pub fn multiroute(
&self,
waypoints: &[[f32; 3]],
range: f32,
mode: Mode,
factor: f32,
) -> Vec<(&System, &Point)> {
let mut route = Vec::new();
for pair in waypoints.windows(2) {
match pair {
&[src, dst] => {
let block = match mode {
Mode::BFS => self.route_bfs(&src, &dst, range),
Mode::Greedy => self.route_greedy(&src, &dst, range),
Mode::AStar => self.route_astar(&src, &dst, range, factor),
};
if route.is_empty() {
route.extend(block.iter());
} else {
route.extend(block.iter().skip(1));
}
}
_ => panic!("Invalid routing parameters!"),
}
}
return route;
}
fn sys_to_point(&self, id: i64) -> &Point {
for p in &self.tree {
if p.id == id {
return p;
}
}
eprintln!("Sytem-ID not found: \"{}\"", id);
std::process::exit(1);
}
fn name_to_point(&self, name: &str) -> &Point {
for sys in self.systems.values() {
if sys.name == name {
return self.sys_to_point(sys.id);
}
}
eprintln!("Sytem not found: \"{}\"", name);
std::process::exit(1);
}
pub fn route_astar(
&self,
src: &[f32; 3],
dst: &[f32; 3],
range: f32,
factor: f32,
) -> Vec<(&System, &Point)> {
if factor == 0.0 {
return self.route_bfs(src, dst, range);
}
println!("Running A-Star with greedy factor of {}", factor);
let start_sys = self.closest(src);
let goal_sys = self.closest(dst);
let start_sys_name = self.systems.get(&start_sys.id).unwrap().name.clone();
let goal_sys_name = self.systems.get(&goal_sys.id).unwrap().name.clone();
{
let d = dist(src, dst);
println!(
"Plotting route from {} to {}...",
start_sys_name, goal_sys_name
);
println!(
"Jump Range: {} Ly, Distance: {} Ly, Theoretical Jumps: {}",
range,
d,
d / range
);
}
let total = self.tree.size() as f32;
let mut prev = FnvHashMap::default();
let mut seen = FnvHashSet::default();
let t_start = Instant::now();
let mut found = false;
let mut maxd = 0;
let mut queue: Vec<(usize, usize, &Point)> = Vec::new();
queue.push((
0, // depth
(start_sys.distp(goal_sys) / range) as usize, // h
&start_sys,
));
seen.insert(start_sys.id);
while !(queue.is_empty() || found) {
while let Some((depth, _, sys)) = queue.pop() {
if depth > maxd {
maxd = depth;
print!(
"[{}] Depth: {}, Queue: {}, Seen: {} ({:.02}%) \r",
format_duration(t_start.elapsed()),
depth,
queue.len(),
seen.len(),
((seen.len() * 100) as f32) / total
);
std::io::stdout().flush().unwrap();
}
if sys.id == goal_sys.id {
found = true;
break;
}
queue.extend(
self.neighbours(&sys, range)
.filter(|&nb| (self.valid(nb) || (nb.id == goal_sys.id)))
.filter(|&nb| seen.insert(nb.id))
.map(|nb| {
prev.insert(nb.id, sys.id);
let d_g = (nb.distp(goal_sys) / range) as usize;
return (depth + 1, d_g, nb);
}),
);
queue.sort_by(|b, a| {
let (a_0, a_1) = (a.0 as f32, a.1 as f32);
let (b_0, b_1) = (b.0 as f32, b.1 as f32);
let v_a = a_0 + a_1 * factor;
let v_b = b_0 + b_1 * factor;
return fcmp(&v_a, &v_b);
});
// queue.reverse();
}
}
println!();
println!();
if !found {
eprintln!(
"No route from {} to {} found!",
start_sys_name, goal_sys_name
);
return Vec::new();
}
let points = self.preload_points();
let mut v: Vec<(&System, &Point)> = Vec::new();
let mut prev_sys_id = goal_sys.id;
loop {
if let Some(sys) = self.systems.get(&prev_sys_id) {
v.push((sys, points[&sys.id]));
} else {
break;
};
match prev.get(&prev_sys_id) {
Some(sys_id) => prev_sys_id = *sys_id,
None => {
break;
}
}
}
v.reverse();
return v;
}
pub fn route_greedy(
&self,
src: &[f32; 3],
dst: &[f32; 3],
range: f32,
) -> Vec<(&System, &Point)> {
println!("Running Greedy-Search");
let start_sys = self.closest(src);
let goal_sys = self.closest(dst);
let start_sys_name = self.systems.get(&start_sys.id).unwrap().name.clone();
let goal_sys_name = self.systems.get(&goal_sys.id).unwrap().name.clone();
{
let d = dist(src, dst);
println!(
"Plotting route from {} to {}...",
start_sys_name, goal_sys_name
);
println!(
"Jump Range: {} Ly, Distance: {} Ly, Theoretical Jumps: {}",
range,
d,
d / range
);
}
let total = self.tree.size() as f32;
let mut prev = FnvHashMap::default();
let mut seen = FnvHashSet::default();
let t_start = Instant::now();
let mut found = false;
let mut maxd = 0;
let mut queue: Vec<(f32, f32, usize, &Point)> = Vec::new();
queue.push((
-self.mult(goal_sys.id),
start_sys.distp2(goal_sys),
0,
&start_sys,
));
seen.insert(start_sys.id);
while !(queue.is_empty() || found) {
std::io::stdout().flush().unwrap();
while let Some((_, _, depth, sys)) = queue.pop() {
if depth > maxd {
maxd = depth;
print!(
"[{}] Depth: {}, Queue: {}, Seen: {} ({:.02}%) \r",
format_duration(t_start.elapsed()),
depth,
queue.len(),
seen.len(),
((seen.len() * 100) as f32) / total
);
}
if sys.id == goal_sys.id {
found = true;
break;
}
queue.extend(
self.neighbours(&sys, range)
.filter(|&nb| (self.valid(nb) || (nb.id == goal_sys.id)))
.filter(|&nb| seen.insert(nb.id))
.map(|nb| {
prev.insert(nb.id, sys.id);
return (-self.mult(nb.id), nb.distp2(goal_sys), depth + 1, nb);
}),
);
queue.sort_by(|a, b| fcmp(&a.0, &b.0).then(fcmp(&a.1, &b.1)));
queue.reverse();
}
}
println!();
if !found {
eprintln!(
"No route from {} to {} found!",
start_sys_name, goal_sys_name
);
return Vec::new();
}
let points = self.preload_points();
let mut v: Vec<(&System, &Point)> = Vec::new();
let mut prev_sys_id = goal_sys.id;
loop {
if let Some(sys) = self.systems.get(&prev_sys_id) {
v.push((sys, points[&sys.id]));
} else {
break;
};
match prev.get(&prev_sys_id) {
Some(sys_id) => prev_sys_id = *sys_id,
None => {
break;
}
}
}
v.reverse();
return v;
}
pub fn route_bfs(&self, src: &[f32; 3], dst: &[f32; 3], range: f32) -> Vec<(&System, &Point)> {
println!("Running BFS");
let start_sys = self.closest(src);
let goal_sys = self.closest(dst);
let start_sys_name = self.systems.get(&start_sys.id).unwrap().name.clone();
let goal_sys_name = self.systems.get(&goal_sys.id).unwrap().name.clone();
{
let d = dist(src, dst);
println!(
"Plotting route from {} to {}...",
start_sys_name, goal_sys_name
);
println!(
"Jump Range: {} Ly, Distance: {} Ly, Theoretical Jumps: {}",
range,
d,
d / range
);
}
let total = self.tree.size() as f32;
let mut prev = FnvHashMap::default();
let mut seen = FnvHashSet::default();
let t_start = Instant::now();
let mut depth = 0;
let mut found = false;
let mut queue: VecDeque<(usize, &Point)> = VecDeque::new();
let mut queue_next: VecDeque<(usize, &Point)> = VecDeque::new();
queue.push_front((0, &start_sys));
seen.insert(start_sys.id);
while !(queue.is_empty() || found) {
print!(
"[{}] Depth: {}, Queue: {}, Seen: {} ({:.02}%) \r",
format_duration(t_start.elapsed()),
depth,
queue.len(),
seen.len(),
((seen.len() * 100) as f32) / total
);
std::io::stdout().flush().unwrap();
while let Some((d, sys)) = queue.pop_front() {
if sys.id == goal_sys.id {
found = true;
break;
}
queue_next.extend(
self.neighbours(&sys, range)
.filter(|&nb| (self.valid(nb) || (nb.id == goal_sys.id)))
.filter(|&nb| seen.insert(nb.id))
.map(|nb| {
prev.insert(nb.id, sys.id);
return (d + 1, nb);
}),
);
}
std::mem::swap(&mut queue, &mut queue_next);
depth += 1;
}
println!();
if !found {
eprintln!(
"No route from {} to {} found!",
start_sys_name, goal_sys_name
);
return Vec::new();
}
let points = self.preload_points();
let mut v: Vec<(&System, &Point)> = Vec::new();
let mut prev_sys_id = goal_sys.id;
loop {
if let Some(sys) = self.systems.get(&prev_sys_id) {
v.push((sys, points[&sys.id]));
} else {
break;
};
match prev.get(&prev_sys_id) {
Some(sys_id) => prev_sys_id = *sys_id,
None => {
break;
}
}
}
v.reverse();
return v;
}
}
fn main() {
let opts = Opt::from_args();
let path = opts.file_path;
let t_load = Instant::now();
let router: Router = Router::new(&path);
println!("Done in {}!", format_duration(t_load.elapsed()));
let t_route = Instant::now();
let route = if opts.permute || opts.full_permute {
router.best_name_multiroute(
&opts.systems,
opts.range,
opts.full_permute,
opts.mode,
opts.factor.unwrap_or(1.0),
)
} else {
router.name_multiroute(
&opts.systems,
opts.range,
opts.mode,
opts.factor.unwrap_or(1.0),
)
};
println!(
"Done in {} ({} Jumps)!\n",
format_duration(t_route.elapsed()),
route.len(),
);
if route.len() == 0 {
eprintln!("No route found!");
return;
}
let mut total: f32 = 0.0;
for ((sys1, p1), (_, p2)) in route.iter().zip(route.iter().skip(1)) {
let dist = p1.distp(p2);
total += dist;
println!(
"{} [{}] ({},{},{}): {:.2} Ly",
sys1.name, sys1.star_type, p1.x, p1.y, p1.z, dist
);
}
let (sys, p) = route.iter().last().unwrap();
println!(
"{} [{}] ({},{},{}): {:.2} Ly",
sys.name, sys.star_type, p.x, p.y, p.z, 0.0
);
println!("Total: {:.2} Ly", total);
}