Initial commit

This commit is contained in:
AbstractConcept 2022-09-13 00:36:34 -05:00
commit 3c7cc0c973
8391 changed files with 704313 additions and 0 deletions

View file

@ -0,0 +1,248 @@
// -----------------------------------------------------------------------
// <copyright file="Behavior.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
using System;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Controls the behavior of the meshing software.
/// </summary>
class Behavior
{
bool poly = false;
bool quality = false;
bool varArea = false;
bool convex = false;
bool jettison = false;
bool boundaryMarkers = true;
bool noHoles = false;
bool conformDel = false;
Func<ITriangle, double, bool> usertest;
int noBisect = 0;
double minAngle = 0.0;
double maxAngle = 0.0;
double maxArea = -1.0;
internal bool fixedArea = false;
internal bool useSegments = true;
internal bool useRegions = false;
internal double goodAngle = 0.0;
internal double maxGoodAngle = 0.0;
internal double offconstant = 0.0;
/// <summary>
/// Creates an instance of the Behavior class.
/// </summary>
public Behavior(bool quality = false, double minAngle = 20.0)
{
if (quality)
{
this.quality = true;
this.minAngle = minAngle;
Update();
}
}
/// <summary>
/// Update quality options dependencies.
/// </summary>
private void Update()
{
this.quality = true;
if (this.minAngle < 0 || this.minAngle > 60)
{
this.minAngle = 0;
this.quality = false;
Log.Instance.Warning("Invalid quality option (minimum angle).", "Mesh.Behavior");
}
if ((this.maxAngle != 0.0) && (this.maxAngle < 60 || this.maxAngle > 180))
{
this.maxAngle = 0;
this.quality = false;
Log.Instance.Warning("Invalid quality option (maximum angle).", "Mesh.Behavior");
}
this.useSegments = this.Poly || this.Quality || this.Convex;
this.goodAngle = Math.Cos(this.MinAngle * Math.PI / 180.0);
this.maxGoodAngle = Math.Cos(this.MaxAngle * Math.PI / 180.0);
if (this.goodAngle == 1.0)
{
this.offconstant = 0.0;
}
else
{
this.offconstant = 0.475 * Math.Sqrt((1.0 + this.goodAngle) / (1.0 - this.goodAngle));
}
this.goodAngle *= this.goodAngle;
}
#region Static properties
/// <summary>
/// No exact arithmetic.
/// </summary>
internal static bool NoExact { get; set; }
#endregion
#region Public properties
/// <summary>
/// Quality mesh generation.
/// </summary>
public bool Quality
{
get { return quality; }
set
{
quality = value;
if (quality)
{
Update();
}
}
}
/// <summary>
/// Minimum angle constraint.
/// </summary>
public double MinAngle
{
get { return minAngle; }
set { minAngle = value; Update(); }
}
/// <summary>
/// Maximum angle constraint.
/// </summary>
public double MaxAngle
{
get { return maxAngle; }
set { maxAngle = value; Update(); }
}
/// <summary>
/// Maximum area constraint.
/// </summary>
public double MaxArea
{
get { return maxArea; }
set
{
maxArea = value;
fixedArea = value > 0.0;
}
}
/// <summary>
/// Apply a maximum triangle area constraint.
/// </summary>
public bool VarArea
{
get { return varArea; }
set { varArea = value; }
}
/// <summary>
/// Input is a Planar Straight Line Graph.
/// </summary>
public bool Poly
{
get { return poly; }
set { poly = value; }
}
/// <summary>
/// Apply a user-defined triangle constraint.
/// </summary>
public Func<ITriangle, double, bool> UserTest
{
get { return usertest; }
set { usertest = value; }
}
/// <summary>
/// Enclose the convex hull with segments.
/// </summary>
public bool Convex
{
get { return convex; }
set { convex = value; }
}
/// <summary>
/// Conforming Delaunay (all triangles are truly Delaunay).
/// </summary>
public bool ConformingDelaunay
{
get { return conformDel; }
set { conformDel = value; }
}
/// <summary>
/// Suppresses boundary segment splitting.
/// </summary>
/// <remarks>
/// 0 = split segments
/// 1 = no new vertices on the boundary
/// 2 = prevent all segment splitting, including internal boundaries
/// </remarks>
public int NoBisect
{
get { return noBisect; }
set
{
noBisect = value;
if (noBisect < 0 || noBisect > 2)
{
noBisect = 0;
}
}
}
/// <summary>
/// Compute boundary information.
/// </summary>
public bool UseBoundaryMarkers
{
get { return boundaryMarkers; }
set { boundaryMarkers = value; }
}
/// <summary>
/// Ignores holes in polygons.
/// </summary>
public bool NoHoles
{
get { return noHoles; }
set { noHoles = value; }
}
/// <summary>
/// Jettison unused vertices from output.
/// </summary>
public bool Jettison
{
get { return jettison; }
set { jettison = value; }
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: ed18cd282abce4422b584d99115a6c87
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,44 @@
// -----------------------------------------------------------------------
// <copyright file="Configuration.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
using System;
using Animation.TriangleNet.Meshing;
using Animation.TriangleNet.Meshing.Algorithm;
/// <summary>
/// Configure advanced aspects of the library.
/// </summary>
internal class Configuration
{
public Configuration()
: this(() => RobustPredicates.Default, () => new TrianglePool())
{
}
public Configuration(Func<IPredicates> predicates)
: this(predicates, () => new TrianglePool())
{
}
public Configuration(Func<IPredicates> predicates, Func<TrianglePool> trianglePool)
{
Predicates = predicates;
TrianglePool = trianglePool;
}
/// <summary>
/// Gets or sets the factory method for the <see cref="IPredicates"/> implementation.
/// </summary>
public Func<IPredicates> Predicates { get; set; }
/// <summary>
/// Gets or sets the factory method for the <see cref="TrianglePool"/>.
/// </summary>
public Func<TrianglePool> TrianglePool { get; set; }
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 3668477112fb74f47ae17f9a227d562f
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,46 @@
// -----------------------------------------------------------------------
// <copyright file="Enums.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
/// <summary>
/// The type of the mesh vertex.
/// </summary>
internal enum VertexType { InputVertex, SegmentVertex, FreeVertex, DeadVertex, UndeadVertex };
/// <summary>
/// Node renumbering algorithms.
/// </summary>
internal enum NodeNumbering { None, Linear, CuthillMcKee };
/// <summary>
/// Labels that signify the result of point location.
/// </summary>
/// <remarks>The result of a search indicates that the point falls in the
/// interior of a triangle, on an edge, on a vertex, or outside the mesh.
/// </remarks>
internal enum LocateResult { InTriangle, OnEdge, OnVertex, Outside };
/// <summary>
/// Labels that signify the result of vertex insertion.
/// </summary>
/// <remarks>The result indicates that the vertex was inserted with complete
/// success, was inserted but encroaches upon a subsegment, was not inserted
/// because it lies on a segment, or was not inserted because another vertex
/// occupies the same location.
/// </remarks>
enum InsertVertexResult { Successful, Encroaching, Violating, Duplicate };
/// <summary>
/// Labels that signify the result of direction finding.
/// </summary>
/// <remarks>The result indicates that a segment connecting the two query
/// points falls within the direction triangle, along the left edge of the
/// direction triangle, or along the right edge of the direction triangle.
/// </remarks>
enum FindDirectionResult { Within, Leftcollinear, Rightcollinear };
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: bffd3c18e4fd644ef820ed46f2f9133c
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: a2002c22d90564ebb9e66b44b6f50886
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,248 @@
// -----------------------------------------------------------------------
// <copyright file="Contour.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Linq;
using System.Collections.Generic;
internal class Contour
{
int marker;
bool convex;
/// <summary>
/// Gets or sets the list of points making up the contour.
/// </summary>
public List<Vertex> Points { get; set; }
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
public Contour(IEnumerable<Vertex> points)
: this(points, 0, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
/// <param name="marker">Contour marker.</param>
public Contour(IEnumerable<Vertex> points, int marker)
: this(points, marker, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
/// <param name="marker">Contour marker.</param>
/// <param name="convex">The hole is convex.</param>
public Contour(IEnumerable<Vertex> points, int marker, bool convex)
{
AddPoints(points);
this.marker = marker;
this.convex = convex;
}
public List<ISegment> GetSegments()
{
var segments = new List<ISegment>();
var p = this.Points;
int count = p.Count - 1;
for (int i = 0; i < count; i++)
{
// Add segments to polygon.
segments.Add(new Segment(p[i], p[i + 1], marker));
}
// Close the contour.
segments.Add(new Segment(p[count], p[0], marker));
return segments;
}
/// <summary>
/// Try to find a point inside the contour.
/// </summary>
/// <param name="limit">The number of iterations on each segment (default = 5).</param>
/// <param name="eps">Threshold for co-linear points (default = 2e-5).</param>
/// <returns>Point inside the contour</returns>
/// <exception cref="Exception">Throws if no point could be found.</exception>
/// <remarks>
/// For each corner (index i) of the contour, the 3 points with indices i-1, i and i+1
/// are considered and a search on the line through the corner vertex is started (either
/// on the bisecting line, or, if <see cref="IPredicates.CounterClockwise"/> is less than
/// eps, on the perpendicular line.
/// A given number of points will be tested (limit), while the distance to the contour
/// boundary will be reduced in each iteration (with a factor 1 / 2^i, i = 1 ... limit).
/// </remarks>
public Point FindInteriorPoint(int limit = 5, double eps = 2e-5)
{
if (convex)
{
int count = this.Points.Count;
var point = new Point(0.0, 0.0);
for (int i = 0; i < count; i++)
{
point.x += this.Points[i].x;
point.y += this.Points[i].y;
}
// If the contour is convex, use its centroid.
point.x /= count;
point.y /= count;
return point;
}
return FindPointInPolygon(this.Points, limit, eps);
}
private void AddPoints(IEnumerable<Vertex> points)
{
this.Points = new List<Vertex>(points);
int count = Points.Count - 1;
// Check if first vertex equals last vertex.
if (Points[0] == Points[count])
{
Points.RemoveAt(count);
}
}
#region Helper methods
private static Point FindPointInPolygon(List<Vertex> contour, int limit, double eps)
{
var bounds = new Rectangle();
bounds.Expand(contour.Cast<Point>());
int length = contour.Count;
var test = new Point();
Point a, b, c; // Current corner points.
double bx, by;
double dx, dy;
double h;
var predicates = new RobustPredicates();
a = contour[0];
b = contour[1];
for (int i = 0; i < length; i++)
{
c = contour[(i + 2) % length];
// Corner point.
bx = b.x;
by = b.y;
// NOTE: if we knew the contour points were in counterclockwise order, we
// could skip concave corners and search only in one direction.
h = predicates.CounterClockwise(a, b, c);
if (Math.Abs(h) < eps)
{
// Points are nearly co-linear. Use perpendicular direction.
dx = (c.y - a.y) / 2;
dy = (a.x - c.x) / 2;
}
else
{
// Direction [midpoint(a-c) -> corner point]
dx = (a.x + c.x) / 2 - bx;
dy = (a.y + c.y) / 2 - by;
}
// Move around the contour.
a = b;
b = c;
h = 1.0;
for (int j = 0; j < limit; j++)
{
// Search in direction.
test.x = bx + dx * h;
test.y = by + dy * h;
if (bounds.Contains(test) && IsPointInPolygon(test, contour))
{
return test;
}
// Search in opposite direction (see NOTE above).
test.x = bx - dx * h;
test.y = by - dy * h;
if (bounds.Contains(test) && IsPointInPolygon(test, contour))
{
return test;
}
h = h / 2;
}
}
throw new Exception();
}
/// <summary>
/// Return true if the given point is inside the polygon, or false if it is not.
/// </summary>
/// <param name="point">The point to check.</param>
/// <param name="poly">The polygon (list of contour points).</param>
/// <returns></returns>
/// <remarks>
/// WARNING: If the point is exactly on the edge of the polygon, then the function
/// may return true or false.
///
/// See http://alienryderflex.com/polygon/
/// </remarks>
private static bool IsPointInPolygon(Point point, List<Vertex> poly)
{
bool inside = false;
double x = point.x;
double y = point.y;
int count = poly.Count;
for (int i = 0, j = count - 1; i < count; i++)
{
if (((poly[i].y < y && poly[j].y >= y) || (poly[j].y < y && poly[i].y >= y))
&& (poly[i].x <= x || poly[j].x <= x))
{
inside ^= (poly[i].x + (y - poly[i].y) / (poly[j].y - poly[i].y) * (poly[j].x - poly[i].x) < x);
}
j = i;
}
return inside;
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 7115b8240624044b9a02b74ca778a32e
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,59 @@
// -----------------------------------------------------------------------
// <copyright file="Edge.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
/// <summary>
/// Represents a straight line segment in 2D space.
/// </summary>
internal class Edge : IEdge
{
/// <summary>
/// Gets the first endpoints index.
/// </summary>
public int P0
{
get;
private set;
}
/// <summary>
/// Gets the second endpoints index.
/// </summary>
public int P1
{
get;
private set;
}
/// <summary>
/// Gets the segments boundary mark.
/// </summary>
public int Label
{
get;
private set;
}
/// <summary>
/// Initializes a new instance of the <see cref="Edge" /> class.
/// </summary>
public Edge(int p0, int p1)
: this(p0, p1, 0)
{}
/// <summary>
/// Initializes a new instance of the <see cref="Edge" /> class.
/// </summary>
public Edge(int p0, int p1, int label)
{
this.P0 = p0;
this.P1 = p1;
this.Label = label;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 80d43aefd9bfa4f669b8abc336353628
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,143 @@
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using Animation.TriangleNet.Meshing;
internal static class ExtensionMethods
{
#region IPolygon extensions
/// <summary>
/// Triangulates a polygon.
/// </summary>
internal static IMesh Triangulate(this IPolygon polygon)
{
return (new GenericMesher()).Triangulate(polygon, null, null);
}
/// <summary>
/// Triangulates a polygon, applying constraint options.
/// </summary>
/// <param name="options">Constraint options.</param>
internal static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options)
{
return (new GenericMesher()).Triangulate(polygon, options, null);
}
/// <summary>
/// Triangulates a polygon, applying quality options.
/// </summary>
/// <param name="quality">Quality options.</param>
internal static IMesh Triangulate(this IPolygon polygon, QualityOptions quality)
{
return (new GenericMesher()).Triangulate(polygon, null, quality);
}
/// <summary>
/// Triangulates a polygon, applying quality and constraint options.
/// </summary>
/// <param name="options">Constraint options.</param>
/// <param name="quality">Quality options.</param>
internal static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options, QualityOptions quality)
{
return (new GenericMesher()).Triangulate(polygon, options, quality);
}
/// <summary>
/// Triangulates a polygon, applying quality and constraint options.
/// </summary>
/// <param name="options">Constraint options.</param>
/// <param name="quality">Quality options.</param>
/// <param name="triangulator">The triangulation algorithm.</param>
internal static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options, QualityOptions quality,
ITriangulator triangulator)
{
return (new GenericMesher(triangulator)).Triangulate(polygon, options, quality);
}
#endregion
#region Rectangle extensions
#endregion
#region ITriangle extensions
/// <summary>
/// Test whether a given point lies inside a triangle or not.
/// </summary>
/// <param name="p">Point to locate.</param>
/// <returns>True, if point is inside or on the edge of this triangle.</returns>
internal static bool Contains(this ITriangle triangle, Point p)
{
return Contains(triangle, p.X, p.Y);
}
/// <summary>
/// Test whether a given point lies inside a triangle or not.
/// </summary>
/// <param name="x">Point to locate.</param>
/// <param name="y">Point to locate.</param>
/// <returns>True, if point is inside or on the edge of this triangle.</returns>
internal static bool Contains(this ITriangle triangle, double x, double y)
{
var t0 = triangle.GetVertex(0);
var t1 = triangle.GetVertex(1);
var t2 = triangle.GetVertex(2);
// TODO: no need to create new Point instances here
Point d0 = new Point(t1.X - t0.X, t1.Y - t0.Y);
Point d1 = new Point(t2.X - t0.X, t2.Y - t0.Y);
Point d2 = new Point(x - t0.X, y - t0.Y);
// crossproduct of (0, 0, 1) and d0
Point c0 = new Point(-d0.Y, d0.X);
// crossproduct of (0, 0, 1) and d1
Point c1 = new Point(-d1.Y, d1.X);
// Linear combination d2 = s * d0 + v * d1.
//
// Multiply both sides of the equation with c0 and c1
// and solve for s and v respectively
//
// s = d2 * c1 / d0 * c1
// v = d2 * c0 / d1 * c0
double s = DotProduct(d2, c1) / DotProduct(d0, c1);
double v = DotProduct(d2, c0) / DotProduct(d1, c0);
if (s >= 0 && v >= 0 && ((s + v) <= 1))
{
// Point is inside or on the edge of this triangle.
return true;
}
return false;
}
internal static Rectangle Bounds(this ITriangle triangle)
{
var bounds = new Rectangle();
for (int i = 0; i < 3; i++)
{
bounds.Expand(triangle.GetVertex(i));
}
return bounds;
}
#endregion
#region Helper methods
internal static double DotProduct(Point p, Point q)
{
return p.X * q.X + p.Y * q.Y;
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 5756a98707df6417ba9135ea9d4f857e
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,30 @@
// -----------------------------------------------------------------------
// <copyright file="IEdge.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
internal interface IEdge
{
/// <summary>
/// Gets the first endpoints index.
/// </summary>
int P0 { get; }
/// <summary>
/// Gets the second endpoints index.
/// </summary>
int P1 { get; }
/// <summary>
/// Gets or sets a general-purpose label.
/// </summary>
/// <remarks>
/// This is used for the segments boundary mark.
/// </remarks>
int Label { get; }
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: ac8497ccdcaa24180924e889b9d7b7d5
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,94 @@
// -----------------------------------------------------------------------
// <copyright file="IPolygon.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Collections.Generic;
/// <summary>
/// Polygon interface.
/// </summary>
internal interface IPolygon
{
/// <summary>
/// Gets the vertices of the polygon.
/// </summary>
List<Vertex> Points { get; }
/// <summary>
/// Gets the segments of the polygon.
/// </summary>
List<ISegment> Segments { get; }
/// <summary>
/// Gets a list of points defining the holes of the polygon.
/// </summary>
List<Point> Holes { get; }
/// <summary>
/// Gets a list of pointers defining the regions of the polygon.
/// </summary>
List<RegionPointer> Regions { get; }
/// <summary>
/// Gets or sets a value indicating whether the vertices have marks or not.
/// </summary>
bool HasPointMarkers { get; set; }
/// <summary>
/// Gets or sets a value indicating whether the segments have marks or not.
/// </summary>
bool HasSegmentMarkers { get; set; }
[Obsolete("Use polygon.Add(contour) method instead.")]
void AddContour(IEnumerable<Vertex> points, int marker, bool hole, bool convex);
[Obsolete("Use polygon.Add(contour) method instead.")]
void AddContour(IEnumerable<Vertex> points, int marker, Point hole);
/// <summary>
/// Compute the bounds of the polygon.
/// </summary>
/// <returns>Rectangle defining an axis-aligned bounding box.</returns>
Rectangle Bounds();
/// <summary>
/// Add a vertex to the polygon.
/// </summary>
/// <param name="vertex">The vertex to insert.</param>
void Add(Vertex vertex);
/// <summary>
/// Add a segment to the polygon.
/// </summary>
/// <param name="segment">The segment to insert.</param>
/// <param name="insert">If true, both endpoints will be added to the points list.</param>
void Add(ISegment segment, bool insert = false);
/// <summary>
/// Add a segment to the polygon.
/// </summary>
/// <param name="segment">The segment to insert.</param>
/// <param name="index">The index of the segment endpoint to add to the points list (must be 0 or 1).</param>
void Add(ISegment segment, int index);
/// <summary>
/// Add a contour to the polygon.
/// </summary>
/// <param name="contour">The contour to insert.</param>
/// <param name="hole">Treat contour as a hole.</param>
void Add(Contour contour, bool hole = false);
/// <summary>
/// Add a contour to the polygon.
/// </summary>
/// <param name="contour">The contour to insert.</param>
/// <param name="hole">Point inside the contour, making it a hole.</param>
void Add(Contour contour, Point hole);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 68c59424e0fae433b9a2957e751fb25f
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,27 @@
// -----------------------------------------------------------------------
// <copyright file="ISegment.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
/// <summary>
/// Interface for segment geometry.
/// </summary>
internal interface ISegment : IEdge
{
/// <summary>
/// Gets the vertex at given index.
/// </summary>
/// <param name="index">The local index (0 or 1).</param>
Vertex GetVertex(int index);
/// <summary>
/// Gets an adjoining triangle.
/// </summary>
/// <param name="index">The triangle index (0 or 1).</param>
ITriangle GetTriangle(int index);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 9132cd52e337145a7a84643de287a066
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,70 @@
// -----------------------------------------------------------------------
// <copyright file="ITriangle.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using Animation.TriangleNet.Topology;
/// <summary>
/// Triangle interface.
/// </summary>
internal interface ITriangle
{
/// <summary>
/// Gets or sets the triangle ID.
/// </summary>
int ID { get; set; }
/// <summary>
/// Gets or sets a general-purpose label.
/// </summary>
/// <remarks>
/// This is used for region information.
/// </remarks>
int Label { get; set; }
/// <summary>
/// Gets or sets the triangle area constraint.
/// </summary>
double Area { get; set; }
/// <summary>
/// Gets the vertex at given index.
/// </summary>
/// <param name="index">The local index (0, 1 or 2).</param>
/// <returns>The vertex.</returns>
Vertex GetVertex(int index);
/// <summary>
/// Gets the ID of the vertex at given index.
/// </summary>
/// <param name="index">The local index (0, 1 or 2).</param>
/// <returns>The vertex ID.</returns>
int GetVertexID(int index);
/// <summary>
/// Gets the neighbor triangle at given index.
/// </summary>
/// <param name="index">The local index (0, 1 or 2).</param>
/// <returns>The neighbor triangle.</returns>
ITriangle GetNeighbor(int index);
/// <summary>
/// Gets the ID of the neighbor triangle at given index.
/// </summary>
/// <param name="index">The local index (0, 1 or 2).</param>
/// <returns>The neighbor triangle ID.</returns>
int GetNeighborID(int index);
/// <summary>
/// Gets the segment at given index.
/// </summary>
/// <param name="index">The local index (0, 1 or 2).</param>
/// <returns>The segment.</returns>
ISegment GetSegment(int index);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 6c2817c735e6d4f80867fba95274f386
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,181 @@
// -----------------------------------------------------------------------
// <copyright file="Point.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Diagnostics;
/// <summary>
/// Represents a 2D point.
/// </summary>
#if USE_Z
[DebuggerDisplay("ID {ID} [{X}, {Y}, {Z}]")]
#else
[DebuggerDisplay("ID {ID} [{X}, {Y}]")]
#endif
internal class Point : IComparable<Point>, IEquatable<Point>
{
internal int id;
internal int label;
internal double x;
internal double y;
#if USE_Z
internal double z;
#endif
public Point()
: this(0.0, 0.0, 0)
{
}
public Point(double x, double y)
: this(x, y, 0)
{
}
public Point(double x, double y, int label)
{
this.x = x;
this.y = y;
this.label = label;
}
#region Public properties
/// <summary>
/// Gets or sets the vertex id.
/// </summary>
public int ID
{
get { return this.id; }
set { this.id = value; }
}
/// <summary>
/// Gets or sets the vertex x coordinate.
/// </summary>
public double X
{
get { return this.x; }
set { this.x = value; }
}
/// <summary>
/// Gets or sets the vertex y coordinate.
/// </summary>
public double Y
{
get { return this.y; }
set { this.y = value; }
}
#if USE_Z
/// <summary>
/// Gets or sets the vertex z coordinate.
/// </summary>
public double Z
{
get { return this.z; }
set { this.z = value; }
}
#endif
/// <summary>
/// Gets or sets a general-purpose label.
/// </summary>
/// <remarks>
/// This is used for the vertex boundary mark.
/// </remarks>
public int Label
{
get { return this.label; }
set { this.label = value; }
}
#endregion
#region Operator overloading / overriding Equals
// Compare "Guidelines for Overriding Equals() and Operator =="
// http://msdn.microsoft.com/en-us/library/ms173147.aspx
public static bool operator==(Point a, Point b)
{
// If both are null, or both are same instance, return true.
if (Object.ReferenceEquals(a, b))
{
return true;
}
// If one is null, but not both, return false.
if (((object)a == null) || ((object)b == null))
{
return false;
}
return a.Equals(b);
}
public static bool operator!=(Point a, Point b)
{
return !(a == b);
}
public override bool Equals(object obj)
{
// If parameter is null return false.
if (obj == null)
{
return false;
}
Point p = obj as Point;
if ((object)p == null)
{
return false;
}
return (x == p.x) && (y == p.y);
}
public bool Equals(Point p)
{
// If vertex is null return false.
if ((object)p == null)
{
return false;
}
// Return true if the fields match:
return (x == p.x) && (y == p.y);
}
#endregion
public int CompareTo(Point other)
{
if (x == other.x && y == other.y)
{
return 0;
}
return (x < other.x || (x == other.x && y < other.y)) ? -1 : 1;
}
public override int GetHashCode()
{
int hash = 19;
hash = hash * 31 + x.GetHashCode();
hash = hash * 31 + y.GetHashCode();
return hash;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 07d9e02d256864a01916e9533af15bca
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,185 @@
// -----------------------------------------------------------------------
// <copyright file="Polygon.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Linq;
using System.Collections.Generic;
/// <summary>
/// A polygon represented as a planar straight line graph.
/// </summary>
internal class Polygon : IPolygon
{
List<Vertex> points;
List<Point> holes;
List<RegionPointer> regions;
List<ISegment> segments;
/// <inheritdoc />
public List<Vertex> Points
{
get { return points; }
}
/// <inheritdoc />
public List<Point> Holes
{
get { return holes; }
}
/// <inheritdoc />
public List<RegionPointer> Regions
{
get { return regions; }
}
/// <inheritdoc />
public List<ISegment> Segments
{
get { return segments; }
}
/// <inheritdoc />
public bool HasPointMarkers { get; set; }
/// <inheritdoc />
public bool HasSegmentMarkers { get; set; }
/// <inheritdoc />
public int Count
{
get { return points.Count; }
}
/// <summary>
/// Initializes a new instance of the <see cref="Polygon" /> class.
/// </summary>
public Polygon()
: this(3, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Polygon" /> class.
/// </summary>
/// <param name="capacity">The default capacity for the points list.</param>
public Polygon(int capacity)
: this(3, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Polygon" /> class.
/// </summary>
/// <param name="capacity">The default capacity for the points list.</param>
/// <param name="markers">Use point and segment markers.</param>
public Polygon(int capacity, bool markers)
{
points = new List<Vertex>(capacity);
holes = new List<Point>();
regions = new List<RegionPointer>();
segments = new List<ISegment>();
HasPointMarkers = markers;
HasSegmentMarkers = markers;
}
[Obsolete("Use polygon.Add(contour) method instead.")]
public void AddContour(IEnumerable<Vertex> points, int marker = 0,
bool hole = false, bool convex = false)
{
this.Add(new Contour(points, marker, convex), hole);
}
[Obsolete("Use polygon.Add(contour) method instead.")]
public void AddContour(IEnumerable<Vertex> points, int marker, Point hole)
{
this.Add(new Contour(points, marker), hole);
}
/// <inheritdoc />
public Rectangle Bounds()
{
var bounds = new Rectangle();
bounds.Expand(this.points.Cast<Point>());
return bounds;
}
/// <summary>
/// Add a vertex to the polygon.
/// </summary>
/// <param name="vertex">The vertex to insert.</param>
public void Add(Vertex vertex)
{
this.points.Add(vertex);
}
/// <summary>
/// Add a segment to the polygon.
/// </summary>
/// <param name="segment">The segment to insert.</param>
/// <param name="insert">If true, both endpoints will be added to the points list.</param>
public void Add(ISegment segment, bool insert = false)
{
this.segments.Add(segment);
if (insert)
{
this.points.Add(segment.GetVertex(0));
this.points.Add(segment.GetVertex(1));
}
}
/// <summary>
/// Add a segment to the polygon.
/// </summary>
/// <param name="segment">The segment to insert.</param>
/// <param name="index">The index of the segment endpoint to add to the points list (must be 0 or 1).</param>
public void Add(ISegment segment, int index)
{
this.segments.Add(segment);
this.points.Add(segment.GetVertex(index));
}
/// <summary>
/// Add a contour to the polygon.
/// </summary>
/// <param name="contour">The contour to insert.</param>
/// <param name="hole">Treat contour as a hole.</param>
public void Add(Contour contour, bool hole = false)
{
if (hole)
{
this.Add(contour, contour.FindInteriorPoint());
}
else
{
this.points.AddRange(contour.Points);
this.segments.AddRange(contour.GetSegments());
}
}
/// <summary>
/// Add a contour to the polygon.
/// </summary>
/// <param name="contour">The contour to insert.</param>
/// <param name="hole">Point inside the contour, making it a hole.</param>
public void Add(Contour contour, Point hole)
{
this.points.AddRange(contour.Points);
this.segments.AddRange(contour.GetSegments());
this.holes.Add(hole);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 7eb2e763592fc45778f3a2f7718c12fd
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,190 @@
// -----------------------------------------------------------------------
// <copyright file="Rectangle.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Collections.Generic;
/// <summary>
/// A simple rectangle class.
/// </summary>
internal class Rectangle
{
double xmin, ymin, xmax, ymax;
/// <summary>
/// Initializes a new instance of the <see cref="Rectangle" /> class.
/// </summary>
public Rectangle()
{
this.xmin = this.ymin = double.MaxValue;
this.xmax = this.ymax = -double.MaxValue;
}
public Rectangle(Rectangle other)
: this(other.Left, other.Bottom, other.Right, other.Top)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Rectangle" /> class
/// with predefined bounds.
/// </summary>
/// <param name="x">Minimum x value (left).</param>
/// <param name="y">Minimum y value (bottom).</param>
/// <param name="width">Width of the rectangle.</param>
/// <param name="height">Height of the rectangle.</param>
public Rectangle(double x, double y, double width, double height)
{
this.xmin = x;
this.ymin = y;
this.xmax = x + width;
this.ymax = y + height;
}
/// <summary>
/// Gets the minimum x value (left boundary).
/// </summary>
public double Left
{
get { return xmin; }
}
/// <summary>
/// Gets the maximum x value (right boundary).
/// </summary>
public double Right
{
get { return xmax; }
}
/// <summary>
/// Gets the minimum y value (bottom boundary).
/// </summary>
public double Bottom
{
get { return ymin; }
}
/// <summary>
/// Gets the maximum y value (top boundary).
/// </summary>
public double Top
{
get { return ymax; }
}
/// <summary>
/// Gets the width of the rectangle.
/// </summary>
public double Width
{
get { return xmax - xmin; }
}
/// <summary>
/// Gets the height of the rectangle.
/// </summary>
public double Height
{
get { return ymax - ymin; }
}
/// <summary>
/// Update bounds.
/// </summary>
/// <param name="dx">Add dx to left and right bounds.</param>
/// <param name="dy">Add dy to top and bottom bounds.</param>
public void Resize(double dx, double dy)
{
xmin -= dx;
xmax += dx;
ymin -= dy;
ymax += dy;
}
/// <summary>
/// Expand rectangle to include given point.
/// </summary>
/// <param name="p">Point.</param>
public void Expand(Point p)
{
xmin = Math.Min(xmin, p.x);
ymin = Math.Min(ymin, p.y);
xmax = Math.Max(xmax, p.x);
ymax = Math.Max(ymax, p.y);
}
/// <summary>
/// Expand rectangle to include a list of points.
/// </summary>
public void Expand(IEnumerable<Point> points)
{
foreach (var p in points)
{
Expand(p);
}
}
/// <summary>
/// Expand rectangle to include given rectangle.
/// </summary>
/// <param name="x">X coordinate.</param>
/// <param name="y">Y coordinate.</param>
public void Expand(Rectangle other)
{
xmin = Math.Min(xmin, other.xmin);
ymin = Math.Min(ymin, other.ymin);
xmax = Math.Max(xmax, other.xmax);
ymax = Math.Max(ymax, other.ymax);
}
/// <summary>
/// Check if given point is inside rectangle.
/// </summary>
/// <param name="x">Point to check.</param>
/// <param name="y">Point to check.</param>
/// <returns>Return true, if rectangle contains given point.</returns>
public bool Contains(double x, double y)
{
return ((x >= xmin) && (x <= xmax) && (y >= ymin) && (y <= ymax));
}
/// <summary>
/// Check if given point is inside rectangle.
/// </summary>
/// <param name="pt">Point to check.</param>
/// <returns>Return true, if rectangle contains given point.</returns>
public bool Contains(Point pt)
{
return Contains(pt.x, pt.y);
}
/// <summary>
/// Check if this rectangle contains other rectangle.
/// </summary>
/// <param name="other">Rectangle to check.</param>
/// <returns>Return true, if this rectangle contains given rectangle.</returns>
public bool Contains(Rectangle other)
{
return (xmin <= other.Left && other.Right <= xmax
&& ymin <= other.Bottom && other.Top <= ymax);
}
/// <summary>
/// Check if this rectangle intersects other rectangle.
/// </summary>
/// <param name="other">Rectangle to check.</param>
/// <returns>Return true, if given rectangle intersects this rectangle.</returns>
public bool Intersects(Rectangle other)
{
return (other.Left < xmax && xmin < other.Right
&& other.Bottom < ymax && ymin < other.Top);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: e6dab3a6b0e864d71a92072b3d3224c3
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,64 @@
// -----------------------------------------------------------------------
// <copyright file="RegionPointer.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using System.Collections.Generic;
/// <summary>
/// Pointer to a region in the mesh geometry. A region is a well-defined
/// subset of the geomerty (enclosed by subsegments).
/// </summary>
internal class RegionPointer
{
internal Point point;
internal int id;
internal double area;
/// <summary>
/// Gets or sets a region area constraint.
/// </summary>
public double Area
{
get { return area; }
set
{
if (value < 0.0)
{
throw new ArgumentException("Area constraints must not be negative.");
}
area = value;
}
}
/// <summary>
/// Initializes a new instance of the <see cref="RegionPointer" /> class.
/// </summary>
/// <param name="x">X coordinate of the region.</param>
/// <param name="y">Y coordinate of the region.</param>
/// <param name="id">Region id.</param>
public RegionPointer(double x, double y, int id)
: this(x, y, id, 0.0)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="RegionPointer" /> class.
/// </summary>
/// <param name="x">X coordinate of the region.</param>
/// <param name="y">Y coordinate of the region.</param>
/// <param name="id">Region id.</param>
/// <param name="area">Area constraint.</param>
public RegionPointer(double x, double y, int id, double area)
{
this.point = new Point(x, y);
this.id = id;
this.area = area;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 5c8f0437817e84603a4785292a7e5242
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,93 @@
// -----------------------------------------------------------------------
// <copyright file="Segment.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
/// <summary>
/// Represents a straight line segment in 2D space.
/// </summary>
internal class Segment : ISegment
{
Vertex v0;
Vertex v1;
int label;
/// <summary>
/// Gets or sets the segments boundary mark.
/// </summary>
public int Label
{
get { return label; }
set { label = value; }
}
/// <summary>
/// Gets the first endpoints index.
/// </summary>
public int P0
{
get { return v0.id; }
}
/// <summary>
/// Gets the second endpoints index.
/// </summary>
public int P1
{
get { return v1.id; }
}
/// <summary>
/// Initializes a new instance of the <see cref="Segment" /> class.
/// </summary>
public Segment(Vertex v0, Vertex v1)
: this(v0, v1, 0)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Segment" /> class.
/// </summary>
public Segment(Vertex v0, Vertex v1, int label)
{
this.v0 = v0;
this.v1 = v1;
this.label = label;
}
/// <summary>
/// Gets the specified segment endpoint.
/// </summary>
/// <param name="index">The endpoint index (0 or 1).</param>
/// <returns></returns>
public Vertex GetVertex(int index)
{
if (index == 0)
{
return v0;
}
if (index == 1)
{
return v1;
}
throw new IndexOutOfRangeException();
}
/// <summary>
/// WARNING: not implemented.
/// </summary>
public ITriangle GetTriangle(int index)
{
throw new NotImplementedException();
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 64b0cc51c72d04973b2516dd2c8137b6
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,127 @@
// -----------------------------------------------------------------------
// <copyright file="Vertex.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Geometry
{
using System;
using Animation.TriangleNet.Topology;
/// <summary>
/// The vertex data structure.
/// </summary>
internal class Vertex : Point
{
// Hash for dictionary. Will be set by mesh instance.
internal int hash;
#if USE_ATTRIBS
internal double[] attributes;
#endif
internal VertexType type;
internal Otri tri;
/// <summary>
/// Initializes a new instance of the <see cref="Vertex" /> class.
/// </summary>
public Vertex()
: this(0, 0, 0)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Vertex" /> class.
/// </summary>
/// <param name="x">The x coordinate of the vertex.</param>
/// <param name="y">The y coordinate of the vertex.</param>
public Vertex(double x, double y)
: this(x, y, 0)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Vertex" /> class.
/// </summary>
/// <param name="x">The x coordinate of the vertex.</param>
/// <param name="y">The y coordinate of the vertex.</param>
/// <param name="mark">The boundary mark.</param>
public Vertex(double x, double y, int mark)
: base(x, y, mark)
{
this.type = VertexType.InputVertex;
}
#if USE_ATTRIBS
/// <summary>
/// Initializes a new instance of the <see cref="Vertex" /> class.
/// </summary>
/// <param name="x">The x coordinate of the vertex.</param>
/// <param name="y">The y coordinate of the vertex.</param>
/// <param name="mark">The boundary mark.</param>
/// <param name="attribs">The number of point attributes.</param>
public Vertex(double x, double y, int mark, int attribs)
: this(x, y, mark)
{
if (attribs > 0)
{
this.attributes = new double[attribs];
}
}
#endif
#region Public properties
#if USE_ATTRIBS
/// <summary>
/// Gets the vertex attributes (may be null).
/// </summary>
public double[] Attributes
{
get { return this.attributes; }
}
#endif
/// <summary>
/// Gets the vertex type.
/// </summary>
public VertexType Type
{
get { return this.type; }
}
/// <summary>
/// Gets the specified coordinate of the vertex.
/// </summary>
/// <param name="i">Coordinate index.</param>
/// <returns>X coordinate, if index is 0, Y coordinate, if index is 1.</returns>
public double this[int i]
{
get
{
if (i == 0)
{
return x;
}
if (i == 1)
{
return y;
}
throw new ArgumentOutOfRangeException("Index must be 0 or 1.");
}
}
#endregion
public override int GetHashCode()
{
return this.hash;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 32c23f1f2292142599f01204e68664c9
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: d1b897e6d67a84472b21b63acc3baac7
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,264 @@
// -----------------------------------------------------------------------
// <copyright file="DebugWriter.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System;
using System.Globalization;
using System.IO;
using System.IO.Compression;
using System.Text;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Writes a the current mesh into a text file.
/// </summary>
/// <remarks>
/// File format:
///
/// num_nodes
/// id_1 nx ny mark
/// ...
/// id_n nx ny mark
///
/// num_segs
/// id_1 p1 p2 mark
/// ...
/// id_n p1 p2 mark
///
/// num_tris
/// id_1 p1 p2 p3 n1 n2 n3
/// ...
/// id_n p1 p2 p3 n1 n2 n3
/// </remarks>
class DebugWriter
{
static NumberFormatInfo nfi = CultureInfo.InvariantCulture.NumberFormat;
int iteration;
string session;
StreamWriter stream;
string tmpFile;
int[] vertices;
int triangles;
#region Singleton pattern
private static readonly DebugWriter instance = new DebugWriter();
// Explicit static constructor to tell C# compiler
// not to mark type as beforefieldinit
static DebugWriter() {}
private DebugWriter() {}
internal static DebugWriter Session
{
get
{
return instance;
}
}
#endregion
/// <summary>
/// Start a new session with given name.
/// </summary>
/// <param name="name">Name of the session (and output files).</param>
public void Start(string session)
{
this.iteration = 0;
this.session = session;
if (this.stream != null)
{
throw new Exception("A session is active. Finish before starting a new.");
}
this.tmpFile = Path.GetTempFileName();
this.stream = new StreamWriter(tmpFile);
}
/// <summary>
/// Write complete mesh to file.
/// </summary>
public void Write(Mesh mesh, bool skip = false)
{
this.WriteMesh(mesh, skip);
this.triangles = mesh.Triangles.Count;
}
/// <summary>
/// Finish this session.
/// </summary>
public void Finish()
{
this.Finish(session + ".mshx");
}
private void Finish(string path)
{
if (stream != null)
{
stream.Flush();
stream.Dispose();
stream = null;
string header = "#!N" + this.iteration + Environment.NewLine;
using (var gzFile = new FileStream(path, FileMode.Create))
{
using (var gzStream = new GZipStream(gzFile, CompressionMode.Compress, false))
{
byte[] bytes = Encoding.UTF8.GetBytes(header);
gzStream.Write(bytes, 0, bytes.Length);
// TODO: read with stream
bytes = File.ReadAllBytes(tmpFile);
gzStream.Write(bytes, 0, bytes.Length);
}
}
File.Delete(this.tmpFile);
}
}
private void WriteGeometry(IPolygon geometry)
{
stream.WriteLine("#!G{0}", this.iteration++);
}
private void WriteMesh(Mesh mesh, bool skip)
{
// Mesh may have changed, but we choose to skip
if (triangles == mesh.triangles.Count && skip)
{
return;
}
// Header line
stream.WriteLine("#!M{0}", this.iteration++);
Vertex p1, p2, p3;
if (VerticesChanged(mesh))
{
HashVertices(mesh);
// Number of vertices.
stream.WriteLine("{0}", mesh.vertices.Count);
foreach (var v in mesh.vertices.Values)
{
// Vertex number, x and y coordinates and marker.
stream.WriteLine("{0} {1} {2} {3}", v.id, v.x.ToString(nfi), v.y.ToString(nfi), v.label);
}
}
else
{
stream.WriteLine("0");
}
// Number of segments.
stream.WriteLine("{0}", mesh.subsegs.Count);
Osub subseg = default(Osub);
subseg.orient = 0;
foreach (var item in mesh.subsegs.Values)
{
if (item.hash <= 0)
{
continue;
}
subseg.seg = item;
p1 = subseg.Org();
p2 = subseg.Dest();
// Segment number, indices of its two endpoints, and marker.
stream.WriteLine("{0} {1} {2} {3}", subseg.seg.hash, p1.id, p2.id, subseg.seg.boundary);
}
Otri tri = default(Otri), trisym = default(Otri);
tri.orient = 0;
int n1, n2, n3, h1, h2, h3;
// Number of triangles.
stream.WriteLine("{0}", mesh.triangles.Count);
foreach (var item in mesh.triangles)
{
tri.tri = item;
p1 = tri.Org();
p2 = tri.Dest();
p3 = tri.Apex();
h1 = (p1 == null) ? -1 : p1.id;
h2 = (p2 == null) ? -1 : p2.id;
h3 = (p3 == null) ? -1 : p3.id;
// Triangle number, indices for three vertices.
stream.Write("{0} {1} {2} {3}", tri.tri.hash, h1, h2, h3);
tri.orient = 1;
tri.Sym(ref trisym);
n1 = trisym.tri.hash;
tri.orient = 2;
tri.Sym(ref trisym);
n2 = trisym.tri.hash;
tri.orient = 0;
tri.Sym(ref trisym);
n3 = trisym.tri.hash;
// Neighboring triangle numbers.
stream.WriteLine(" {0} {1} {2}", n1, n2, n3);
}
}
private bool VerticesChanged(Mesh mesh)
{
if (vertices == null || mesh.Vertices.Count != vertices.Length)
{
return true;
}
int i = 0;
foreach (var v in mesh.Vertices)
{
if (v.id != vertices[i++])
{
return true;
}
}
return false;
}
private void HashVertices(Mesh mesh)
{
if (vertices == null || mesh.Vertices.Count != vertices.Length)
{
vertices = new int[mesh.Vertices.Count];
}
int i = 0;
foreach (var v in mesh.Vertices)
{
vertices[i++] = v.id;
}
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 56ae7d772de344c1a9a4484e952b7d33
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,127 @@
// -----------------------------------------------------------------------
// <copyright file="FileProcessor.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System;
using System.Collections.Generic;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Meshing;
internal static class FileProcessor
{
static List<IFileFormat> formats;
static FileProcessor()
{
formats = new List<IFileFormat>();
// Add Triangle file format as default.
formats.Add(new TriangleFormat());
}
internal static void Add(IFileFormat format)
{
formats.Add(format);
}
internal static bool IsSupported(string file)
{
foreach (var format in formats)
{
if (format.IsSupported(file))
{
return true;
}
}
return false;
}
#region Polygon read/write
/// <summary>
/// Read a file containing polygon geometry.
/// </summary>
/// <param name="filename">The path of the file to read.</param>
/// <returns>An instance of the <see cref="IPolygon" /> class.</returns>
internal static IPolygon Read(string filename)
{
foreach (IPolygonFormat format in formats)
{
if (format != null && format.IsSupported(filename))
{
return format.Read(filename);
}
}
throw new Exception("File format not supported.");
}
/// <summary>
/// Save a polygon geometry to disk.
/// </summary>
/// <param name="mesh">An instance of the <see cref="IPolygon" /> class.</param>
/// <param name="filename">The path of the file to save.</param>
internal static void Write(IPolygon polygon, string filename)
{
foreach (IPolygonFormat format in formats)
{
if (format != null && format.IsSupported(filename))
{
format.Write(polygon, filename);
return;
}
}
throw new Exception("File format not supported.");
}
#endregion
#region Mesh read/write
/// <summary>
/// Read a file containing a mesh.
/// </summary>
/// <param name="filename">The path of the file to read.</param>
/// <returns>An instance of the <see cref="IMesh" /> interface.</returns>
internal static IMesh Import(string filename)
{
foreach (IMeshFormat format in formats)
{
if (format != null && format.IsSupported(filename))
{
return format.Import(filename);
}
}
throw new Exception("File format not supported.");
}
/// <summary>
/// Save a mesh to disk.
/// </summary>
/// <param name="mesh">An instance of the <see cref="IMesh" /> interface.</param>
/// <param name="filename">The path of the file to save.</param>
internal static void Write(IMesh mesh, string filename)
{
foreach (IMeshFormat format in formats)
{
if (format != null && format.IsSupported(filename))
{
format.Write(mesh, filename);
return;
}
}
throw new Exception("File format not supported.");
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: ca1b61f918cd44aec95c1fcde79a51f9
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,14 @@
// -----------------------------------------------------------------------
// <copyright file="IFileFormat.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
internal interface IFileFormat
{
bool IsSupported(string file);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 189b37483531447aa818511aea18b139
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,39 @@
// -----------------------------------------------------------------------
// <copyright file="IMeshFormat.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System.IO;
using Animation.TriangleNet.Meshing;
/// <summary>
/// Interface for mesh I/O.
/// </summary>
internal interface IMeshFormat : IFileFormat
{
/// <summary>
/// Read a file containing a mesh.
/// </summary>
/// <param name="filename">The path of the file to read.</param>
/// <returns>An instance of the <see cref="IMesh" /> interface.</returns>
IMesh Import(string filename);
/// <summary>
/// Save a mesh to disk.
/// </summary>
/// <param name="mesh">An instance of the <see cref="IMesh" /> interface.</param>
/// <param name="filename">The path of the file to save.</param>
void Write(IMesh mesh, string filename);
/// <summary>
/// Save a mesh to a <see cref="Stream" />.
/// </summary>
/// <param name="mesh">An instance of the <see cref="IMesh" /> interface.</param>
/// <param name="stream">The stream to save to.</param>
void Write(IMesh mesh, Stream stream);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 6376b9aaff8504ac697cd831a610f1e8
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,39 @@
// -----------------------------------------------------------------------
// <copyright file="IPolygonFormat.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System.IO;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Interface for geometry input.
/// </summary>
internal interface IPolygonFormat : IFileFormat
{
/// <summary>
/// Read a file containing polygon geometry.
/// </summary>
/// <param name="filename">The path of the file to read.</param>
/// <returns>An instance of the <see cref="IPolygon" /> class.</returns>
IPolygon Read(string filename);
/// <summary>
/// Save a polygon geometry to disk.
/// </summary>
/// <param name="polygon">An instance of the <see cref="IPolygon" /> class.</param>
/// <param name="filename">The path of the file to save.</param>
void Write(IPolygon polygon, string filename);
/// <summary>
/// Save a polygon geometry to a <see cref="Stream" />.
/// </summary>
/// <param name="polygon">An instance of the <see cref="IPolygon" /> class.</param>
/// <param name="stream">The stream to save to.</param>
void Write(IPolygon polygon, Stream stream);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: c5038e46090aa4f809c75db148ca3b5f
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,86 @@
// -----------------------------------------------------------------------
// <copyright file="InputTriangle.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Simple triangle class for input.
/// </summary>
internal class InputTriangle : ITriangle
{
internal int[] vertices;
internal int label;
internal double area;
public InputTriangle(int p0, int p1, int p2)
{
this.vertices = new int[] { p0, p1, p2 };
}
#region Public properties
/// <summary>
/// Gets the triangle id.
/// </summary>
public int ID
{
get { return 0; }
set {}
}
/// <summary>
/// Region ID the triangle belongs to.
/// </summary>
public int Label
{
get { return label; }
set { label = value; }
}
/// <summary>
/// Gets the triangle area constraint.
/// </summary>
public double Area
{
get { return area; }
set { area = value; }
}
/// <summary>
/// Gets the specified corners vertex.
/// </summary>
public Vertex GetVertex(int index)
{
return null; // TODO: throw NotSupportedException?
}
public int GetVertexID(int index)
{
return vertices[index];
}
public ITriangle GetNeighbor(int index)
{
return null;
}
public int GetNeighborID(int index)
{
return -1;
}
public ISegment GetSegment(int index)
{
return null;
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 8586f5d059bef4957927fa6f9b5f33f2
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,92 @@
// -----------------------------------------------------------------------
// <copyright file="TriangleFormat.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System;
using System.Collections.Generic;
using System.IO;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Meshing;
/// <summary>
/// Implements geometry and mesh file formats of the the original Triangle code.
/// </summary>
internal class TriangleFormat : IPolygonFormat, IMeshFormat
{
public bool IsSupported(string file)
{
string ext = Path.GetExtension(file).ToLower();
if (ext == ".node" || ext == ".poly" || ext == ".ele")
{
return true;
}
return false;
}
public IMesh Import(string filename)
{
string ext = Path.GetExtension(filename);
if (ext == ".node" || ext == ".poly" || ext == ".ele")
{
List<ITriangle> triangles;
Polygon geometry;
(new TriangleReader()).Read(filename, out geometry, out triangles);
if (geometry != null && triangles != null)
{
return Converter.ToMesh(geometry, triangles.ToArray());
}
}
throw new NotSupportedException("Could not load '" + filename + "' file.");
}
public void Write(IMesh mesh, string filename)
{
var writer = new TriangleWriter();
writer.WritePoly((Mesh)mesh, Path.ChangeExtension(filename, ".poly"));
writer.WriteElements((Mesh)mesh, Path.ChangeExtension(filename, ".ele"));
}
public void Write(IMesh mesh, Stream stream)
{
throw new NotImplementedException();
}
public IPolygon Read(string filename)
{
string ext = Path.GetExtension(filename);
if (ext == ".node")
{
return (new TriangleReader()).ReadNodeFile(filename);
}
else if (ext == ".poly")
{
return (new TriangleReader()).ReadPolyFile(filename);
}
throw new NotSupportedException("File format '" + ext + "' not supported.");
}
public void Write(IPolygon polygon, string filename)
{
(new TriangleWriter()).WritePoly(polygon, filename);
}
public void Write(IPolygon polygon, Stream stream)
{
throw new NotImplementedException();
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 4a1337b0388344c16a0e94a38038934f
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,757 @@
// -----------------------------------------------------------------------
// <copyright file="TriangleReader.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Helper methods for reading Triangle file formats.
/// </summary>
internal class TriangleReader
{
static NumberFormatInfo nfi = NumberFormatInfo.InvariantInfo;
int startIndex = 0;
#region Helper methods
private bool TryReadLine(StreamReader reader, out string[] token)
{
token = null;
if (reader.EndOfStream)
{
return false;
}
string line = reader.ReadLine().Trim();
while (IsStringNullOrWhiteSpace(line) || line.StartsWith("#"))
{
if (reader.EndOfStream)
{
return false;
}
line = reader.ReadLine().Trim();
}
token = line.Split(new char[] { ' ', '\t' }, StringSplitOptions.RemoveEmptyEntries);
return true;
}
/// <summary>
/// Read vertex information of the given line.
/// </summary>
/// <param name="data">The input geometry.</param>
/// <param name="index">The current vertex index.</param>
/// <param name="line">The current line.</param>
/// <param name="attributes">Number of point attributes</param>
/// <param name="marks">Number of point markers (0 or 1)</param>
private void ReadVertex(List<Vertex> data, int index, string[] line, int attributes, int marks)
{
double x = double.Parse(line[1], nfi);
double y = double.Parse(line[2], nfi);
var v = new Vertex(x, y);
// Read a vertex marker.
if (marks > 0 && line.Length > 3 + attributes)
{
v.Label = int.Parse(line[3 + attributes]);
}
if (attributes > 0)
{
#if USE_ATTRIBS
var attribs = new double[attributes];
// Read the vertex attributes.
for (int j = 0; j < attributes; j++)
{
if (line.Length > 3 + j)
{
attribs[j] = double.Parse(line[3 + j], nfi);
}
}
v.attributes = attribs;
#endif
}
data.Add(v);
}
#endregion
#region Main I/O methods
/// <summary>
/// Reads geometry information from .node or .poly files.
/// </summary>
public void Read(string filename, out Polygon polygon)
{
polygon = null;
string path = Path.ChangeExtension(filename, ".poly");
if (File.Exists(path))
{
polygon = ReadPolyFile(path);
}
else
{
path = Path.ChangeExtension(filename, ".node");
polygon = ReadNodeFile(path);
}
}
/// <summary>
/// Reads a mesh from .node, .poly or .ele files.
/// </summary>
public void Read(string filename, out Polygon geometry, out List<ITriangle> triangles)
{
triangles = null;
Read(filename, out geometry);
string path = Path.ChangeExtension(filename, ".ele");
if (File.Exists(path) && geometry != null)
{
triangles = ReadEleFile(path);
}
}
/// <summary>
/// Reads geometry information from .node or .poly files.
/// </summary>
public IPolygon Read(string filename)
{
Polygon geometry = null;
Read(filename, out geometry);
return geometry;
}
#endregion
/// <summary>
/// Read the vertices from a file, which may be a .node or .poly file.
/// </summary>
/// <param name="nodefilename"></param>
/// <remarks>Will NOT read associated .ele by default.</remarks>
public Polygon ReadNodeFile(string nodefilename)
{
return ReadNodeFile(nodefilename, false);
}
/// <summary>
/// Read the vertices from a file, which may be a .node or .poly file.
/// </summary>
/// <param name="nodefilename"></param>
/// <param name="readElements"></param>
public Polygon ReadNodeFile(string nodefilename, bool readElements)
{
Polygon data;
startIndex = 0;
string[] line;
int invertices = 0, attributes = 0, nodemarkers = 0;
using (var reader = new StreamReader(nodefilename))
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file.");
}
// Read number of vertices, number of dimensions, number of vertex
// attributes, and number of boundary markers.
invertices = int.Parse(line[0]);
if (invertices < 3)
{
throw new Exception("Input must have at least three input vertices.");
}
if (line.Length > 1)
{
if (int.Parse(line[1]) != 2)
{
throw new Exception("Triangle only works with two-dimensional meshes.");
}
}
if (line.Length > 2)
{
attributes = int.Parse(line[2]);
}
if (line.Length > 3)
{
nodemarkers = int.Parse(line[3]);
}
data = new Polygon(invertices);
// Read the vertices.
if (invertices > 0)
{
for (int i = 0; i < invertices; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (vertices).");
}
if (line.Length < 3)
{
throw new Exception("Invalid vertex.");
}
if (i == 0)
{
startIndex = int.Parse(line[0], nfi);
}
ReadVertex(data.Points, i, line, attributes, nodemarkers);
}
}
}
if (readElements)
{
// Read area file
string elefile = Path.ChangeExtension(nodefilename, ".ele");
if (File.Exists(elefile))
{
ReadEleFile(elefile, true);
}
}
return data;
}
/// <summary>
/// Read the vertices and segments from a .poly file.
/// </summary>
/// <param name="polyfilename"></param>
/// <remarks>Will NOT read associated .ele by default.</remarks>
public Polygon ReadPolyFile(string polyfilename)
{
return ReadPolyFile(polyfilename, false, false);
}
/// <summary>
/// Read the vertices and segments from a .poly file.
/// </summary>
/// <param name="polyfilename"></param>
/// <param name="readElements">If true, look for an associated .ele file.</param>
/// <remarks>Will NOT read associated .area by default.</remarks>
public Polygon ReadPolyFile(string polyfilename, bool readElements)
{
return ReadPolyFile(polyfilename, readElements, false);
}
/// <summary>
/// Read the vertices and segments from a .poly file.
/// </summary>
/// <param name="polyfilename"></param>
/// <param name="readElements">If true, look for an associated .ele file.</param>
/// <param name="readElements">If true, look for an associated .area file.</param>
public Polygon ReadPolyFile(string polyfilename, bool readElements, bool readArea)
{
// Read poly file
Polygon data;
startIndex = 0;
string[] line;
int invertices = 0, attributes = 0, nodemarkers = 0;
using (var reader = new StreamReader(polyfilename))
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file.");
}
// Read number of vertices, number of dimensions, number of vertex
// attributes, and number of boundary markers.
invertices = int.Parse(line[0]);
if (line.Length > 1)
{
if (int.Parse(line[1]) != 2)
{
throw new Exception("Triangle only works with two-dimensional meshes.");
}
}
if (line.Length > 2)
{
attributes = int.Parse(line[2]);
}
if (line.Length > 3)
{
nodemarkers = int.Parse(line[3]);
}
// Read the vertices.
if (invertices > 0)
{
data = new Polygon(invertices);
for (int i = 0; i < invertices; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (vertices).");
}
if (line.Length < 3)
{
throw new Exception("Invalid vertex.");
}
if (i == 0)
{
// Set the start index!
startIndex = int.Parse(line[0], nfi);
}
ReadVertex(data.Points, i, line, attributes, nodemarkers);
}
}
else
{
// If the .poly file claims there are zero vertices, that means that
// the vertices should be read from a separate .node file.
data = ReadNodeFile(Path.ChangeExtension(polyfilename, ".node"));
invertices = data.Points.Count;
}
var points = data.Points;
if (points.Count == 0)
{
throw new Exception("No nodes available.");
}
// Read the segments from a .poly file.
// Read number of segments and number of boundary markers.
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (segments).");
}
int insegments = int.Parse(line[0]);
int segmentmarkers = 0;
if (line.Length > 1)
{
segmentmarkers = int.Parse(line[1]);
}
int end1, end2, mark;
// Read and insert the segments.
for (int i = 0; i < insegments; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (segments).");
}
if (line.Length < 3)
{
throw new Exception("Segment has no endpoints.");
}
// TODO: startIndex ok?
end1 = int.Parse(line[1]) - startIndex;
end2 = int.Parse(line[2]) - startIndex;
mark = 0;
if (segmentmarkers > 0 && line.Length > 3)
{
mark = int.Parse(line[3]);
}
if ((end1 < 0) || (end1 >= invertices))
{
if (Log.Verbose)
{
Log.Instance.Warning("Invalid first endpoint of segment.",
"MeshReader.ReadPolyfile()");
}
}
else if ((end2 < 0) || (end2 >= invertices))
{
if (Log.Verbose)
{
Log.Instance.Warning("Invalid second endpoint of segment.",
"MeshReader.ReadPolyfile()");
}
}
else
{
data.Add(new Segment(points[end1], points[end2], mark));
}
}
// Read holes from a .poly file.
// Read the holes.
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (holes).");
}
int holes = int.Parse(line[0]);
if (holes > 0)
{
for (int i = 0; i < holes; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (holes).");
}
if (line.Length < 3)
{
throw new Exception("Invalid hole.");
}
data.Holes.Add(new Point(double.Parse(line[1], nfi),
double.Parse(line[2], nfi)));
}
}
// Read area constraints (optional).
if (TryReadLine(reader, out line))
{
int id, regions = int.Parse(line[0]);
if (regions > 0)
{
for (int i = 0; i < regions; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (region).");
}
if (line.Length < 4)
{
throw new Exception("Invalid region attributes.");
}
if (!int.TryParse(line[3], out id))
{
id = i;
}
double area = 0.0;
if (line.Length > 4)
{
double.TryParse(line[4], NumberStyles.Number, nfi, out area);
}
// Triangle's .poly file format allows region definitions with
// either 4 or 5 parameters, and different interpretations for
// them depending on the number of parameters.
//
// See http://www.cs.cmu.edu/~quake/triangle.poly.html
//
// The .NET version will interpret the fourth parameter always
// as an integer region id and the optional fifth parameter as
// an area constraint.
data.Regions.Add(new RegionPointer(
double.Parse(line[1], nfi), // Region x
double.Parse(line[2], nfi), // Region y
id, area));
}
}
}
}
// Read ele file
if (readElements)
{
string elefile = Path.ChangeExtension(polyfilename, ".ele");
if (File.Exists(elefile))
{
ReadEleFile(elefile, readArea);
}
}
return data;
}
/// <summary>
/// Read elements from an .ele file.
/// </summary>
/// <param name="elefilename">The file name.</param>
/// <returns>A list of triangles.</returns>
public List<ITriangle> ReadEleFile(string elefilename)
{
return ReadEleFile(elefilename, false);
}
/// <summary>
/// Read the elements from an .ele file.
/// </summary>
/// <param name="elefilename"></param>
/// <param name="data"></param>
/// <param name="readArea"></param>
private List<ITriangle> ReadEleFile(string elefilename, bool readArea)
{
int intriangles = 0, attributes = 0;
List<ITriangle> triangles;
using (var reader = new StreamReader(elefilename))
{
// Read number of elements and number of attributes.
string[] line;
bool validRegion = false;
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (elements).");
}
intriangles = int.Parse(line[0]);
// We irgnore index 1 (number of nodes per triangle)
attributes = 0;
if (line.Length > 2)
{
attributes = int.Parse(line[2]);
validRegion = true;
}
if (attributes > 1)
{
Log.Instance.Warning("Triangle attributes not supported.", "FileReader.Read");
}
triangles = new List<ITriangle>(intriangles);
InputTriangle tri;
// Read triangles.
for (int i = 0; i < intriangles; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (elements).");
}
if (line.Length < 4)
{
throw new Exception("Triangle has no nodes.");
}
// TODO: startIndex ok?
tri = new InputTriangle(
int.Parse(line[1]) - startIndex,
int.Parse(line[2]) - startIndex,
int.Parse(line[3]) - startIndex);
// Read triangle region
if (attributes > 0 && validRegion)
{
int region = 0;
validRegion = int.TryParse(line[4], out region);
tri.label = region;
}
triangles.Add(tri);
}
}
// Read area file
if (readArea)
{
string areafile = Path.ChangeExtension(elefilename, ".area");
if (File.Exists(areafile))
{
ReadAreaFile(areafile, intriangles);
}
}
return triangles;
}
/// <summary>
/// Read the area constraints from an .area file.
/// </summary>
/// <param name="areafilename"></param>
/// <param name="intriangles"></param>
/// <param name="data"></param>
private double[] ReadAreaFile(string areafilename, int intriangles)
{
double[] data = null;
using (var reader = new StreamReader(areafilename))
{
string[] line;
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (area).");
}
if (int.Parse(line[0]) != intriangles)
{
Log.Instance.Warning("Number of area constraints doesn't match number of triangles.",
"ReadAreaFile()");
return null;
}
data = new double[intriangles];
// Read area constraints.
for (int i = 0; i < intriangles; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (area).");
}
if (line.Length != 2)
{
throw new Exception("Triangle has no nodes.");
}
data[i] = double.Parse(line[1], nfi);
}
}
return data;
}
/// <summary>
/// Read an .edge file.
/// </summary>
/// <param name="edgeFile">The file name.</param>
/// <param name="invertices">The number of input vertices (read from a .node or .poly file).</param>
/// <returns>A List of edges.</returns>
public List<Edge> ReadEdgeFile(string edgeFile, int invertices)
{
// Read poly file
List<Edge> data = null;
startIndex = 0;
string[] line;
using (var reader = new StreamReader(edgeFile))
{
// Read the edges from a .edge file.
// Read number of segments and number of boundary markers.
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (segments).");
}
int inedges = int.Parse(line[0]);
int edgemarkers = 0;
if (line.Length > 1)
{
edgemarkers = int.Parse(line[1]);
}
if (inedges > 0)
{
data = new List<Edge>(inedges);
}
int end1, end2, mark;
// Read and insert the segments.
for (int i = 0; i < inedges; i++)
{
if (!TryReadLine(reader, out line))
{
throw new Exception("Can't read input file (segments).");
}
if (line.Length < 3)
{
throw new Exception("Segment has no endpoints.");
}
// TODO: startIndex ok?
end1 = int.Parse(line[1]) - startIndex;
end2 = int.Parse(line[2]) - startIndex;
mark = 0;
if (edgemarkers > 0 && line.Length > 3)
{
mark = int.Parse(line[3]);
}
if ((end1 < 0) || (end1 >= invertices))
{
if (Log.Verbose)
{
Log.Instance.Warning("Invalid first endpoint of segment.",
"MeshReader.ReadPolyfile()");
}
}
else if ((end2 < 0) || (end2 >= invertices))
{
if (Log.Verbose)
{
Log.Instance.Warning("Invalid second endpoint of segment.",
"MeshReader.ReadPolyfile()");
}
}
else
{
data.Add(new Edge(end1, end2, mark));
}
}
}
return data;
}
bool IsStringNullOrWhiteSpace(string value)
{
if (value != null)
{
for (int i = 0; i < value.Length; i++)
{
if (!char.IsWhiteSpace(value[i]))
{
return false;
}
}
}
return true;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 9bd4358267e2d4fe3966c374d0a5b5b7
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,460 @@
// -----------------------------------------------------------------------
// <copyright file="TriangleWriter.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.IO
{
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Topology;
/// <summary>
/// Helper methods for writing Triangle file formats.
/// </summary>
internal class TriangleWriter
{
static NumberFormatInfo nfi = NumberFormatInfo.InvariantInfo;
/// <summary>
/// Number the vertices and write them to a .node file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
public void Write(Mesh mesh, string filename)
{
WritePoly(mesh, Path.ChangeExtension(filename, ".poly"));
WriteElements(mesh, Path.ChangeExtension(filename, ".ele"));
}
/// <summary>
/// Number the vertices and write them to a .node file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
public void WriteNodes(Mesh mesh, string filename)
{
using (var writer = new StreamWriter(filename))
{
WriteNodes(writer, mesh);
}
}
/// <summary>
/// Number the vertices and write them to a .node file.
/// </summary>
private void WriteNodes(StreamWriter writer, Mesh mesh)
{
int outvertices = mesh.vertices.Count;
int nextras = mesh.nextras;
Behavior behavior = mesh.behavior;
if (behavior.Jettison)
{
outvertices = mesh.vertices.Count - mesh.undeads;
}
if (writer != null)
{
// Number of vertices, number of dimensions, number of vertex attributes,
// and number of boundary markers (zero or one).
writer.WriteLine("{0} {1} {2} {3}", outvertices, mesh.mesh_dim, nextras,
behavior.UseBoundaryMarkers ? "1" : "0");
if (mesh.numbering == NodeNumbering.None)
{
// If the mesh isn't numbered yet, use linear node numbering.
mesh.Renumber();
}
if (mesh.numbering == NodeNumbering.Linear)
{
// If numbering is linear, just use the dictionary values.
WriteNodes(writer, mesh.vertices.Values, behavior.UseBoundaryMarkers,
nextras, behavior.Jettison);
}
else
{
// If numbering is not linear, a simple 'foreach' traversal of the dictionary
// values doesn't reflect the actual numbering. Use an array instead.
// TODO: Could use a custom sorting function on dictionary values instead.
Vertex[] nodes = new Vertex[mesh.vertices.Count];
foreach (var node in mesh.vertices.Values)
{
nodes[node.id] = node;
}
WriteNodes(writer, nodes, behavior.UseBoundaryMarkers,
nextras, behavior.Jettison);
}
}
}
/// <summary>
/// Write the vertices to a stream.
/// </summary>
/// <param name="nodes"></param>
/// <param name="writer"></param>
private void WriteNodes(StreamWriter writer, IEnumerable<Vertex> nodes, bool markers,
int attribs, bool jettison)
{
int index = 0;
foreach (var vertex in nodes)
{
if (!jettison || vertex.type != VertexType.UndeadVertex)
{
// Vertex number, x and y coordinates.
writer.Write("{0} {1} {2}", index, vertex.x.ToString(nfi), vertex.y.ToString(nfi));
#if USE_ATTRIBS
// Write attributes.
for (int j = 0; j < attribs; j++)
{
writer.Write(" {0}", vertex.attributes[j].ToString(nfi));
}
#endif
if (markers)
{
// Write the boundary marker.
writer.Write(" {0}", vertex.label);
}
writer.WriteLine();
index++;
}
}
}
/// <summary>
/// Write the triangles to an .ele file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
public void WriteElements(Mesh mesh, string filename)
{
Otri tri = default(Otri);
Vertex p1, p2, p3;
bool regions = mesh.behavior.useRegions;
int j = 0;
tri.orient = 0;
using (var writer = new StreamWriter(filename))
{
// Number of triangles, vertices per triangle, attributes per triangle.
writer.WriteLine("{0} 3 {1}", mesh.triangles.Count, regions ? 1 : 0);
foreach (var item in mesh.triangles)
{
tri.tri = item;
p1 = tri.Org();
p2 = tri.Dest();
p3 = tri.Apex();
// Triangle number, indices for three vertices.
writer.Write("{0} {1} {2} {3}", j, p1.id, p2.id, p3.id);
if (regions)
{
writer.Write(" {0}", tri.tri.label);
}
writer.WriteLine();
// Number elements
item.id = j++;
}
}
}
/// <summary>
/// Write the segments and holes to a .poly file.
/// </summary>
/// <param name="polygon">Data source.</param>
/// <param name="filename">File name.</param>
/// <param name="writeNodes">Write nodes into this file.</param>
/// <remarks>If the nodes should not be written into this file,
/// make sure a .node file was written before, so that the nodes
/// are numbered right.</remarks>
public void WritePoly(IPolygon polygon, string filename)
{
bool hasMarkers = polygon.HasSegmentMarkers;
using (var writer = new StreamWriter(filename))
{
// TODO: write vertex attributes
writer.WriteLine("{0} 2 0 {1}", polygon.Points.Count, polygon.HasPointMarkers ? "1" : "0");
// Write nodes to this file.
WriteNodes(writer, polygon.Points, polygon.HasPointMarkers, 0, false);
// Number of segments, number of boundary markers (zero or one).
writer.WriteLine("{0} {1}", polygon.Segments.Count, hasMarkers ? "1" : "0");
Vertex p, q;
int j = 0;
foreach (var seg in polygon.Segments)
{
p = seg.GetVertex(0);
q = seg.GetVertex(1);
// Segment number, indices of its two endpoints, and possibly a marker.
if (hasMarkers)
{
writer.WriteLine("{0} {1} {2} {3}", j, p.ID, q.ID, seg.Label);
}
else
{
writer.WriteLine("{0} {1} {2}", j, p.ID, q.ID);
}
j++;
}
// Holes
j = 0;
writer.WriteLine("{0}", polygon.Holes.Count);
foreach (var hole in polygon.Holes)
{
writer.WriteLine("{0} {1} {2}", j++, hole.X.ToString(nfi), hole.Y.ToString(nfi));
}
// Regions
if (polygon.Regions.Count > 0)
{
j = 0;
writer.WriteLine("{0}", polygon.Regions.Count);
foreach (var region in polygon.Regions)
{
writer.WriteLine("{0} {1} {2} {3}", j, region.point.X.ToString(nfi),
region.point.Y.ToString(nfi), region.id);
j++;
}
}
}
}
/// <summary>
/// Write the segments and holes to a .poly file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
public void WritePoly(Mesh mesh, string filename)
{
WritePoly(mesh, filename, true);
}
/// <summary>
/// Write the segments and holes to a .poly file.
/// </summary>
/// <param name="mesh">Data source.</param>
/// <param name="filename">File name.</param>
/// <param name="writeNodes">Write nodes into this file.</param>
/// <remarks>If the nodes should not be written into this file,
/// make sure a .node file was written before, so that the nodes
/// are numbered right.</remarks>
public void WritePoly(Mesh mesh, string filename, bool writeNodes)
{
Osub subseg = default(Osub);
Vertex pt1, pt2;
bool useBoundaryMarkers = mesh.behavior.UseBoundaryMarkers;
using (var writer = new StreamWriter(filename))
{
if (writeNodes)
{
// Write nodes to this file.
WriteNodes(writer, mesh);
}
else
{
// The zero indicates that the vertices are in a separate .node file.
// Followed by number of dimensions, number of vertex attributes,
// and number of boundary markers (zero or one).
writer.WriteLine("0 {0} {1} {2}", mesh.mesh_dim, mesh.nextras,
useBoundaryMarkers ? "1" : "0");
}
// Number of segments, number of boundary markers (zero or one).
writer.WriteLine("{0} {1}", mesh.subsegs.Count,
useBoundaryMarkers ? "1" : "0");
subseg.orient = 0;
int j = 0;
foreach (var item in mesh.subsegs.Values)
{
subseg.seg = item;
pt1 = subseg.Org();
pt2 = subseg.Dest();
// Segment number, indices of its two endpoints, and possibly a marker.
if (useBoundaryMarkers)
{
writer.WriteLine("{0} {1} {2} {3}", j, pt1.id, pt2.id, subseg.seg.boundary);
}
else
{
writer.WriteLine("{0} {1} {2}", j, pt1.id, pt2.id);
}
j++;
}
// Holes
j = 0;
writer.WriteLine("{0}", mesh.holes.Count);
foreach (var hole in mesh.holes)
{
writer.WriteLine("{0} {1} {2}", j++, hole.X.ToString(nfi), hole.Y.ToString(nfi));
}
// Regions
if (mesh.regions.Count > 0)
{
j = 0;
writer.WriteLine("{0}", mesh.regions.Count);
foreach (var region in mesh.regions)
{
writer.WriteLine("{0} {1} {2} {3}", j, region.point.X.ToString(nfi),
region.point.Y.ToString(nfi), region.id);
j++;
}
}
}
}
/// <summary>
/// Write the edges to an .edge file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
public void WriteEdges(Mesh mesh, string filename)
{
Otri tri = default(Otri), trisym = default(Otri);
Osub checkmark = default(Osub);
Vertex p1, p2;
Behavior behavior = mesh.behavior;
using (var writer = new StreamWriter(filename))
{
// Number of edges, number of boundary markers (zero or one).
writer.WriteLine("{0} {1}", mesh.NumberOfEdges, behavior.UseBoundaryMarkers ? "1" : "0");
long index = 0;
// To loop over the set of edges, loop over all triangles, and look at
// the three edges of each triangle. If there isn't another triangle
// adjacent to the edge, operate on the edge. If there is another
// adjacent triangle, operate on the edge only if the current triangle
// has a smaller pointer than its neighbor. This way, each edge is
// considered only once.
foreach (var item in mesh.triangles)
{
tri.tri = item;
for (tri.orient = 0; tri.orient < 3; tri.orient++)
{
tri.Sym(ref trisym);
if ((tri.tri.id < trisym.tri.id) || (trisym.tri.id == Mesh.DUMMY))
{
p1 = tri.Org();
p2 = tri.Dest();
if (behavior.UseBoundaryMarkers)
{
// Edge number, indices of two endpoints, and a boundary marker.
// If there's no subsegment, the boundary marker is zero.
if (behavior.useSegments)
{
tri.Pivot(ref checkmark);
if (checkmark.seg.hash == Mesh.DUMMY)
{
writer.WriteLine("{0} {1} {2} {3}", index, p1.id, p2.id, 0);
}
else
{
writer.WriteLine("{0} {1} {2} {3}", index, p1.id, p2.id,
checkmark.seg.boundary);
}
}
else
{
writer.WriteLine("{0} {1} {2} {3}", index, p1.id, p2.id,
trisym.tri.id == Mesh.DUMMY ? "1" : "0");
}
}
else
{
// Edge number, indices of two endpoints.
writer.WriteLine("{0} {1} {2}", index, p1.id, p2.id);
}
index++;
}
}
}
}
}
/// <summary>
/// Write the triangle neighbors to a .neigh file.
/// </summary>
/// <param name="mesh"></param>
/// <param name="filename"></param>
/// <remarks>WARNING: Be sure WriteElements has been called before,
/// so the elements are numbered right!</remarks>
public void WriteNeighbors(Mesh mesh, string filename)
{
Otri tri = default(Otri), trisym = default(Otri);
int n1, n2, n3;
int i = 0;
using (StreamWriter writer = new StreamWriter(filename))
{
// Number of triangles, three neighbors per triangle.
writer.WriteLine("{0} 3", mesh.triangles.Count);
foreach (var item in mesh.triangles)
{
tri.tri = item;
tri.orient = 1;
tri.Sym(ref trisym);
n1 = trisym.tri.id;
tri.orient = 2;
tri.Sym(ref trisym);
n2 = trisym.tri.id;
tri.orient = 0;
tri.Sym(ref trisym);
n3 = trisym.tri.id;
// Triangle number, neighboring triangle numbers.
writer.WriteLine("{0} {1} {2} {3}", i++, n1, n2, n3);
}
}
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 2d813b6701ce64ba398e4a1d159ae1a3
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,22 @@
// -----------------------------------------------------------------------
// <copyright file="IPredicates.cs">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
using Animation.TriangleNet.Geometry;
internal interface IPredicates
{
double CounterClockwise(Point a, Point b, Point c);
double InCircle(Point a, Point b, Point c, Point p);
Point FindCircumcenter(Point org, Point dest, Point apex, ref double xi, ref double eta);
Point FindCircumcenter(Point org, Point dest, Point apex, ref double xi, ref double eta,
double offconstant);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: cb2b414b37e204a0e9107e0b489ce263
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,84 @@
// -----------------------------------------------------------------------
// <copyright file="Log.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
using System.Collections.Generic;
using Animation.TriangleNet.Logging;
/// <summary>
/// A simple logger, which logs messages to a List.
/// </summary>
/// <remarks>Using singleton pattern as proposed by Jon Skeet.
/// http://csharpindepth.com/Articles/General/Singleton.aspx
/// </remarks>
internal sealed class Log : ILog<LogItem>
{
/// <summary>
/// Log detailed information.
/// </summary>
internal static bool Verbose { get; set; }
private List<LogItem> log = new List<LogItem>();
private LogLevel level = LogLevel.Info;
#region Singleton pattern
private static readonly Log instance = new Log();
// Explicit static constructor to tell C# compiler
// not to mark type as beforefieldinit
static Log() {}
private Log() {}
internal static ILog<LogItem> Instance
{
get
{
return instance;
}
}
#endregion
public void Add(LogItem item)
{
log.Add(item);
}
public void Clear()
{
log.Clear();
}
public void Info(string message)
{
log.Add(new LogItem(LogLevel.Info, message));
}
public void Warning(string message, string location)
{
log.Add(new LogItem(LogLevel.Warning, message, location));
}
public void Error(string message, string location)
{
log.Add(new LogItem(LogLevel.Error, message, location));
}
public IList<LogItem> Data
{
get { return log; }
}
public LogLevel Level
{
get { return level; }
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 196e2f3da40aa4a94a0a42a5e8fe60b9
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 12bf6e7f64391465d8d8ef95ca3a996b
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,35 @@
// -----------------------------------------------------------------------
// <copyright file="ILog.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Logging
{
using System.Collections.Generic;
internal enum LogLevel
{
Info = 0,
Warning = 1,
Error = 2
}
/// <summary>
/// A basic log interface.
/// </summary>
internal interface ILog<T> where T : ILogItem
{
void Add(T item);
void Clear();
void Info(string message);
void Error(string message, string info);
void Warning(string message, string info);
IList<T> Data { get; }
LogLevel Level { get; }
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 3abac741b8a6142f39b485177be8e65d
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,22 @@
// -----------------------------------------------------------------------
// <copyright file="ILogItem.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Logging
{
using System;
/// <summary>
/// A basic log item interface.
/// </summary>
internal interface ILogItem
{
DateTime Time { get; }
LogLevel Level { get; }
string Message { get; }
string Info { get; }
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 833bedb11c85e4260a9ec09f2f773258
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,54 @@
// -----------------------------------------------------------------------
// <copyright file="SimpleLogItem.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Logging
{
using System;
/// <summary>
/// Represents an item stored in the log.
/// </summary>
internal class LogItem : ILogItem
{
DateTime time;
LogLevel level;
string message;
string info;
public DateTime Time
{
get { return time; }
}
public LogLevel Level
{
get { return level; }
}
public string Message
{
get { return message; }
}
public string Info
{
get { return info; }
}
public LogItem(LogLevel level, string message)
: this(level, message, "")
{}
public LogItem(LogLevel level, string message, string info)
{
this.time = DateTime.Now;
this.level = level;
this.message = message;
this.info = info;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: a4a265973daf84c31b1feb0b2f1f44a7
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: cf5fb0e34d9b14ac88f67bf18b0bc902
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,214 @@
// -----------------------------------------------------------------------
// <copyright file="MeshValidator.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
{
using System;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
internal static class MeshValidator
{
private static RobustPredicates predicates = RobustPredicates.Default;
/// <summary>
/// Test the mesh for topological consistency.
/// </summary>
internal static bool IsConsistent(Mesh mesh)
{
Otri tri = default(Otri);
Otri oppotri = default(Otri), oppooppotri = default(Otri);
Vertex org, dest, apex;
Vertex oppoorg, oppodest;
var logger = Log.Instance;
// Temporarily turn on exact arithmetic if it's off.
bool saveexact = Behavior.NoExact;
Behavior.NoExact = false;
int horrors = 0;
// Run through the list of triangles, checking each one.
foreach (var t in mesh.triangles)
{
tri.tri = t;
// Check all three edges of the triangle.
for (tri.orient = 0; tri.orient < 3; tri.orient++)
{
org = tri.Org();
dest = tri.Dest();
if (tri.orient == 0)
{
// Only test for inversion once.
// Test if the triangle is flat or inverted.
apex = tri.Apex();
if (predicates.CounterClockwise(org, dest, apex) <= 0.0)
{
if (Log.Verbose)
{
logger.Warning(String.Format("Triangle is flat or inverted (ID {0}).", t.id),
"MeshValidator.IsConsistent()");
}
horrors++;
}
}
// Find the neighboring triangle on this edge.
tri.Sym(ref oppotri);
if (oppotri.tri.id != Mesh.DUMMY)
{
// Check that the triangle's neighbor knows it's a neighbor.
oppotri.Sym(ref oppooppotri);
if ((tri.tri != oppooppotri.tri) || (tri.orient != oppooppotri.orient))
{
if (tri.tri == oppooppotri.tri && Log.Verbose)
{
logger.Warning("Asymmetric triangle-triangle bond: (Right triangle, wrong orientation)",
"MeshValidator.IsConsistent()");
}
horrors++;
}
// Check that both triangles agree on the identities
// of their shared vertices.
oppoorg = oppotri.Org();
oppodest = oppotri.Dest();
if ((org != oppodest) || (dest != oppoorg))
{
if (Log.Verbose)
{
logger.Warning("Mismatched edge coordinates between two triangles.",
"MeshValidator.IsConsistent()");
}
horrors++;
}
}
}
}
// Check for unconnected vertices
mesh.MakeVertexMap();
foreach (var v in mesh.vertices.Values)
{
if (v.tri.tri == null && Log.Verbose)
{
logger.Warning("Vertex (ID " + v.id + ") not connected to mesh (duplicate input vertex?)",
"MeshValidator.IsConsistent()");
}
}
// Restore the status of exact arithmetic.
Behavior.NoExact = saveexact;
return (horrors == 0);
}
/// <summary>
/// Check if the mesh is (conforming) Delaunay.
/// </summary>
internal static bool IsDelaunay(Mesh mesh)
{
return IsDelaunay(mesh, false);
}
/// <summary>
/// Check if that the mesh is (constrained) Delaunay.
/// </summary>
internal static bool IsConstrainedDelaunay(Mesh mesh)
{
return IsDelaunay(mesh, true);
}
/// <summary>
/// Ensure that the mesh is (constrained) Delaunay.
/// </summary>
private static bool IsDelaunay(Mesh mesh, bool constrained)
{
Otri loop = default(Otri);
Otri oppotri = default(Otri);
Osub opposubseg = default(Osub);
Vertex org, dest, apex;
Vertex oppoapex;
bool shouldbedelaunay;
var logger = Log.Instance;
// Temporarily turn on exact arithmetic if it's off.
bool saveexact = Behavior.NoExact;
Behavior.NoExact = false;
int horrors = 0;
var inf1 = mesh.infvertex1;
var inf2 = mesh.infvertex2;
var inf3 = mesh.infvertex3;
// Run through the list of triangles, checking each one.
foreach (var tri in mesh.triangles)
{
loop.tri = tri;
// Check all three edges of the triangle.
for (loop.orient = 0; loop.orient < 3; loop.orient++)
{
org = loop.Org();
dest = loop.Dest();
apex = loop.Apex();
loop.Sym(ref oppotri);
oppoapex = oppotri.Apex();
// Only test that the edge is locally Delaunay if there is an
// adjoining triangle whose pointer is larger (to ensure that
// each pair isn't tested twice).
shouldbedelaunay = (loop.tri.id < oppotri.tri.id) &&
!Otri.IsDead(oppotri.tri) && (oppotri.tri.id != Mesh.DUMMY) &&
(org != inf1) && (org != inf2) && (org != inf3) &&
(dest != inf1) && (dest != inf2) && (dest != inf3) &&
(apex != inf1) && (apex != inf2) && (apex != inf3) &&
(oppoapex != inf1) && (oppoapex != inf2) && (oppoapex != inf3);
if (constrained && mesh.checksegments && shouldbedelaunay)
{
// If a subsegment separates the triangles, then the edge is
// constrained, so no local Delaunay test should be done.
loop.Pivot(ref opposubseg);
if (opposubseg.seg.hash != Mesh.DUMMY)
{
shouldbedelaunay = false;
}
}
if (shouldbedelaunay)
{
if (predicates.NonRegular(org, dest, apex, oppoapex) > 0.0)
{
if (Log.Verbose)
{
logger.Warning(String.Format("Non-regular pair of triangles found (IDs {0}/{1}).",
loop.tri.id, oppotri.tri.id), "MeshValidator.IsDelaunay()");
}
horrors++;
}
}
}
}
// Restore the status of exact arithmetic.
Behavior.NoExact = saveexact;
return (horrors == 0);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 8688318786c2246dbae9df88b4e94a46
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 2e613ffc4de344b0cb197af2ee53feb5
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 4637d45a8a4db4499b2c164b519ca3c3
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,697 @@
// -----------------------------------------------------------------------
// <copyright file="Dwyer.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Algorithm
{
using System;
using System.Collections.Generic;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Tools;
using Animation.TriangleNet.Topology;
/// <summary>
/// Builds a delaunay triangulation using the divide-and-conquer algorithm.
/// </summary>
/// <remarks>
/// The divide-and-conquer bounding box
///
/// I originally implemented the divide-and-conquer and incremental Delaunay
/// triangulations using the edge-based data structure presented by Guibas
/// and Stolfi. Switching to a triangle-based data structure doubled the
/// speed. However, I had to think of a few extra tricks to maintain the
/// elegance of the original algorithms.
///
/// The "bounding box" used by my variant of the divide-and-conquer
/// algorithm uses one triangle for each edge of the convex hull of the
/// triangulation. These bounding triangles all share a common apical
/// vertex, which is represented by NULL and which represents nothing.
/// The bounding triangles are linked in a circular fan about this NULL
/// vertex, and the edges on the convex hull of the triangulation appear
/// opposite the NULL vertex. You might find it easiest to imagine that
/// the NULL vertex is a point in 3D space behind the center of the
/// triangulation, and that the bounding triangles form a sort of cone.
///
/// This bounding box makes it easy to represent degenerate cases. For
/// instance, the triangulation of two vertices is a single edge. This edge
/// is represented by two bounding box triangles, one on each "side" of the
/// edge. These triangles are also linked together in a fan about the NULL
/// vertex.
///
/// The bounding box also makes it easy to traverse the convex hull, as the
/// divide-and-conquer algorithm needs to do.
/// </remarks>
internal class Dwyer : ITriangulator
{
// Random is not threadsafe, so don't make this static.
// Random rand = new Random(DateTime.Now.Millisecond);
IPredicates predicates;
public bool UseDwyer = true;
Vertex[] sortarray;
Mesh mesh;
/// <summary>
/// Form a Delaunay triangulation by the divide-and-conquer method.
/// </summary>
/// <returns></returns>
/// <remarks>
/// Sorts the vertices, calls a recursive procedure to triangulate them, and
/// removes the bounding box, setting boundary markers as appropriate.
/// </remarks>
public IMesh Triangulate(IList<Vertex> points, Configuration config)
{
this.predicates = config.Predicates();
this.mesh = new Mesh(config);
this.mesh.TransferNodes(points);
Otri hullleft = default(Otri), hullright = default(Otri);
int i, j, n = points.Count;
// Allocate an array of pointers to vertices for sorting.
this.sortarray = new Vertex[n];
i = 0;
foreach (var v in points)
{
sortarray[i++] = v;
}
// Sort the vertices.
VertexSorter.Sort(sortarray);
// Discard duplicate vertices, which can really mess up the algorithm.
i = 0;
for (j = 1; j < n; j++)
{
if ((sortarray[i].x == sortarray[j].x) && (sortarray[i].y == sortarray[j].y))
{
if (Log.Verbose)
{
Log.Instance.Warning(
String.Format("A duplicate vertex appeared and was ignored (ID {0}).", sortarray[j].id),
"Dwyer.Triangulate()");
}
sortarray[j].type = VertexType.UndeadVertex;
mesh.undeads++;
}
else
{
i++;
sortarray[i] = sortarray[j];
}
}
i++;
if (UseDwyer)
{
// Re-sort the array of vertices to accommodate alternating cuts.
VertexSorter.Alternate(sortarray, i);
}
// Form the Delaunay triangulation.
DivconqRecurse(0, i - 1, 0, ref hullleft, ref hullright);
this.mesh.hullsize = RemoveGhosts(ref hullleft);
return this.mesh;
}
/// <summary>
/// Merge two adjacent Delaunay triangulations into a single Delaunay triangulation.
/// </summary>
/// <param name="farleft">Bounding triangles of the left triangulation.</param>
/// <param name="innerleft">Bounding triangles of the left triangulation.</param>
/// <param name="innerright">Bounding triangles of the right triangulation.</param>
/// <param name="farright">Bounding triangles of the right triangulation.</param>
/// <param name="axis"></param>
/// <remarks>
/// This is similar to the algorithm given by Guibas and Stolfi, but uses
/// a triangle-based, rather than edge-based, data structure.
///
/// The algorithm walks up the gap between the two triangulations, knitting
/// them together. As they are merged, some of their bounding triangles
/// are converted into real triangles of the triangulation. The procedure
/// pulls each hull's bounding triangles apart, then knits them together
/// like the teeth of two gears. The Delaunay property determines, at each
/// step, whether the next "tooth" is a bounding triangle of the left hull
/// or the right. When a bounding triangle becomes real, its apex is
/// changed from NULL to a real vertex.
///
/// Only two new triangles need to be allocated. These become new bounding
/// triangles at the top and bottom of the seam. They are used to connect
/// the remaining bounding triangles (those that have not been converted
/// into real triangles) into a single fan.
///
/// On label, 'farleft' and 'innerleft' are bounding triangles of the left
/// triangulation. The origin of 'farleft' is the leftmost vertex, and
/// the destination of 'innerleft' is the rightmost vertex of the
/// triangulation. Similarly, 'innerright' and 'farright' are bounding
/// triangles of the right triangulation. The origin of 'innerright' and
/// destination of 'farright' are the leftmost and rightmost vertices.
///
/// On completion, the origin of 'farleft' is the leftmost vertex of the
/// merged triangulation, and the destination of 'farright' is the rightmost
/// vertex.
/// </remarks>
void MergeHulls(ref Otri farleft, ref Otri innerleft, ref Otri innerright,
ref Otri farright, int axis)
{
Otri leftcand = default(Otri), rightcand = default(Otri);
Otri nextedge = default(Otri);
Otri sidecasing = default(Otri), topcasing = default(Otri), outercasing = default(Otri);
Otri checkedge = default(Otri);
Otri baseedge = default(Otri);
Vertex innerleftdest;
Vertex innerrightorg;
Vertex innerleftapex, innerrightapex;
Vertex farleftpt, farrightpt;
Vertex farleftapex, farrightapex;
Vertex lowerleft, lowerright;
Vertex upperleft, upperright;
Vertex nextapex;
Vertex checkvertex;
bool changemade;
bool badedge;
bool leftfinished, rightfinished;
innerleftdest = innerleft.Dest();
innerleftapex = innerleft.Apex();
innerrightorg = innerright.Org();
innerrightapex = innerright.Apex();
// Special treatment for horizontal cuts.
if (UseDwyer && (axis == 1))
{
farleftpt = farleft.Org();
farleftapex = farleft.Apex();
farrightpt = farright.Dest();
farrightapex = farright.Apex();
// The pointers to the extremal vertices are shifted to point to the
// topmost and bottommost vertex of each hull, rather than the
// leftmost and rightmost vertices.
while (farleftapex.y < farleftpt.y)
{
farleft.Lnext();
farleft.Sym();
farleftpt = farleftapex;
farleftapex = farleft.Apex();
}
innerleft.Sym(ref checkedge);
checkvertex = checkedge.Apex();
while (checkvertex.y > innerleftdest.y)
{
checkedge.Lnext(ref innerleft);
innerleftapex = innerleftdest;
innerleftdest = checkvertex;
innerleft.Sym(ref checkedge);
checkvertex = checkedge.Apex();
}
while (innerrightapex.y < innerrightorg.y)
{
innerright.Lnext();
innerright.Sym();
innerrightorg = innerrightapex;
innerrightapex = innerright.Apex();
}
farright.Sym(ref checkedge);
checkvertex = checkedge.Apex();
while (checkvertex.y > farrightpt.y)
{
checkedge.Lnext(ref farright);
farrightapex = farrightpt;
farrightpt = checkvertex;
farright.Sym(ref checkedge);
checkvertex = checkedge.Apex();
}
}
// Find a line tangent to and below both hulls.
do
{
changemade = false;
// Make innerleftdest the "bottommost" vertex of the left hull.
if (predicates.CounterClockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0)
{
innerleft.Lprev();
innerleft.Sym();
innerleftdest = innerleftapex;
innerleftapex = innerleft.Apex();
changemade = true;
}
// Make innerrightorg the "bottommost" vertex of the right hull.
if (predicates.CounterClockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0)
{
innerright.Lnext();
innerright.Sym();
innerrightorg = innerrightapex;
innerrightapex = innerright.Apex();
changemade = true;
}
}
while (changemade);
// Find the two candidates to be the next "gear tooth."
innerleft.Sym(ref leftcand);
innerright.Sym(ref rightcand);
// Create the bottom new bounding triangle.
mesh.MakeTriangle(ref baseedge);
// Connect it to the bounding boxes of the left and right triangulations.
baseedge.Bond(ref innerleft);
baseedge.Lnext();
baseedge.Bond(ref innerright);
baseedge.Lnext();
baseedge.SetOrg(innerrightorg);
baseedge.SetDest(innerleftdest);
// Apex is intentionally left NULL.
// Fix the extreme triangles if necessary.
farleftpt = farleft.Org();
if (innerleftdest == farleftpt)
{
baseedge.Lnext(ref farleft);
}
farrightpt = farright.Dest();
if (innerrightorg == farrightpt)
{
baseedge.Lprev(ref farright);
}
// The vertices of the current knitting edge.
lowerleft = innerleftdest;
lowerright = innerrightorg;
// The candidate vertices for knitting.
upperleft = leftcand.Apex();
upperright = rightcand.Apex();
// Walk up the gap between the two triangulations, knitting them together.
while (true)
{
// Have we reached the top? (This isn't quite the right question,
// because even though the left triangulation might seem finished now,
// moving up on the right triangulation might reveal a new vertex of
// the left triangulation. And vice-versa.)
leftfinished = predicates.CounterClockwise(upperleft, lowerleft, lowerright) <= 0.0;
rightfinished = predicates.CounterClockwise(upperright, lowerleft, lowerright) <= 0.0;
if (leftfinished && rightfinished)
{
// Create the top new bounding triangle.
mesh.MakeTriangle(ref nextedge);
nextedge.SetOrg(lowerleft);
nextedge.SetDest(lowerright);
// Apex is intentionally left NULL.
// Connect it to the bounding boxes of the two triangulations.
nextedge.Bond(ref baseedge);
nextedge.Lnext();
nextedge.Bond(ref rightcand);
nextedge.Lnext();
nextedge.Bond(ref leftcand);
// Special treatment for horizontal cuts.
if (UseDwyer && (axis == 1))
{
farleftpt = farleft.Org();
farleftapex = farleft.Apex();
farrightpt = farright.Dest();
farrightapex = farright.Apex();
farleft.Sym(ref checkedge);
checkvertex = checkedge.Apex();
// The pointers to the extremal vertices are restored to the
// leftmost and rightmost vertices (rather than topmost and
// bottommost).
while (checkvertex.x < farleftpt.x)
{
checkedge.Lprev(ref farleft);
farleftapex = farleftpt;
farleftpt = checkvertex;
farleft.Sym(ref checkedge);
checkvertex = checkedge.Apex();
}
while (farrightapex.x > farrightpt.x)
{
farright.Lprev();
farright.Sym();
farrightpt = farrightapex;
farrightapex = farright.Apex();
}
}
return;
}
// Consider eliminating edges from the left triangulation.
if (!leftfinished)
{
// What vertex would be exposed if an edge were deleted?
leftcand.Lprev(ref nextedge);
nextedge.Sym();
nextapex = nextedge.Apex();
// If nextapex is NULL, then no vertex would be exposed; the
// triangulation would have been eaten right through.
if (nextapex != null)
{
// Check whether the edge is Delaunay.
badedge = predicates.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
while (badedge)
{
// Eliminate the edge with an edge flip. As a result, the
// left triangulation will have one more boundary triangle.
nextedge.Lnext();
nextedge.Sym(ref topcasing);
nextedge.Lnext();
nextedge.Sym(ref sidecasing);
nextedge.Bond(ref topcasing);
leftcand.Bond(ref sidecasing);
leftcand.Lnext();
leftcand.Sym(ref outercasing);
nextedge.Lprev();
nextedge.Bond(ref outercasing);
// Correct the vertices to reflect the edge flip.
leftcand.SetOrg(lowerleft);
leftcand.SetDest(null);
leftcand.SetApex(nextapex);
nextedge.SetOrg(null);
nextedge.SetDest(upperleft);
nextedge.SetApex(nextapex);
// Consider the newly exposed vertex.
upperleft = nextapex;
// What vertex would be exposed if another edge were deleted?
sidecasing.Copy(ref nextedge);
nextapex = nextedge.Apex();
if (nextapex != null)
{
// Check whether the edge is Delaunay.
badedge = predicates.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
}
else
{
// Avoid eating right through the triangulation.
badedge = false;
}
}
}
}
// Consider eliminating edges from the right triangulation.
if (!rightfinished)
{
// What vertex would be exposed if an edge were deleted?
rightcand.Lnext(ref nextedge);
nextedge.Sym();
nextapex = nextedge.Apex();
// If nextapex is NULL, then no vertex would be exposed; the
// triangulation would have been eaten right through.
if (nextapex != null)
{
// Check whether the edge is Delaunay.
badedge = predicates.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
while (badedge)
{
// Eliminate the edge with an edge flip. As a result, the
// right triangulation will have one more boundary triangle.
nextedge.Lprev();
nextedge.Sym(ref topcasing);
nextedge.Lprev();
nextedge.Sym(ref sidecasing);
nextedge.Bond(ref topcasing);
rightcand.Bond(ref sidecasing);
rightcand.Lprev();
rightcand.Sym(ref outercasing);
nextedge.Lnext();
nextedge.Bond(ref outercasing);
// Correct the vertices to reflect the edge flip.
rightcand.SetOrg(null);
rightcand.SetDest(lowerright);
rightcand.SetApex(nextapex);
nextedge.SetOrg(upperright);
nextedge.SetDest(null);
nextedge.SetApex(nextapex);
// Consider the newly exposed vertex.
upperright = nextapex;
// What vertex would be exposed if another edge were deleted?
sidecasing.Copy(ref nextedge);
nextapex = nextedge.Apex();
if (nextapex != null)
{
// Check whether the edge is Delaunay.
badedge = predicates.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
}
else
{
// Avoid eating right through the triangulation.
badedge = false;
}
}
}
}
if (leftfinished || (!rightfinished &&
(predicates.InCircle(upperleft, lowerleft, lowerright, upperright) > 0.0)))
{
// Knit the triangulations, adding an edge from 'lowerleft'
// to 'upperright'.
baseedge.Bond(ref rightcand);
rightcand.Lprev(ref baseedge);
baseedge.SetDest(lowerleft);
lowerright = upperright;
baseedge.Sym(ref rightcand);
upperright = rightcand.Apex();
}
else
{
// Knit the triangulations, adding an edge from 'upperleft'
// to 'lowerright'.
baseedge.Bond(ref leftcand);
leftcand.Lnext(ref baseedge);
baseedge.SetOrg(lowerright);
lowerleft = upperleft;
baseedge.Sym(ref leftcand);
upperleft = leftcand.Apex();
}
}
}
/// <summary>
/// Recursively form a Delaunay triangulation by the divide-and-conquer method.
/// </summary>
/// <param name="left"></param>
/// <param name="right"></param>
/// <param name="axis"></param>
/// <param name="farleft"></param>
/// <param name="farright"></param>
/// <remarks>
/// Recursively breaks down the problem into smaller pieces, which are
/// knitted together by mergehulls(). The base cases (problems of two or
/// three vertices) are handled specially here.
///
/// On completion, 'farleft' and 'farright' are bounding triangles such that
/// the origin of 'farleft' is the leftmost vertex (breaking ties by
/// choosing the highest leftmost vertex), and the destination of
/// 'farright' is the rightmost vertex (breaking ties by choosing the
/// lowest rightmost vertex).
/// </remarks>
void DivconqRecurse(int left, int right, int axis,
ref Otri farleft, ref Otri farright)
{
Otri midtri = default(Otri);
Otri tri1 = default(Otri);
Otri tri2 = default(Otri);
Otri tri3 = default(Otri);
Otri innerleft = default(Otri), innerright = default(Otri);
double area;
int vertices = right - left + 1;
int divider;
if (vertices == 2)
{
// The triangulation of two vertices is an edge. An edge is
// represented by two bounding triangles.
mesh.MakeTriangle(ref farleft);
farleft.SetOrg(sortarray[left]);
farleft.SetDest(sortarray[left + 1]);
// The apex is intentionally left NULL.
mesh.MakeTriangle(ref farright);
farright.SetOrg(sortarray[left + 1]);
farright.SetDest(sortarray[left]);
// The apex is intentionally left NULL.
farleft.Bond(ref farright);
farleft.Lprev();
farright.Lnext();
farleft.Bond(ref farright);
farleft.Lprev();
farright.Lnext();
farleft.Bond(ref farright);
// Ensure that the origin of 'farleft' is sortarray[0].
farright.Lprev(ref farleft);
return;
}
else if (vertices == 3)
{
// The triangulation of three vertices is either a triangle (with
// three bounding triangles) or two edges (with four bounding
// triangles). In either case, four triangles are created.
mesh.MakeTriangle(ref midtri);
mesh.MakeTriangle(ref tri1);
mesh.MakeTriangle(ref tri2);
mesh.MakeTriangle(ref tri3);
area = predicates.CounterClockwise(sortarray[left], sortarray[left + 1], sortarray[left + 2]);
if (area == 0.0)
{
// Three collinear vertices; the triangulation is two edges.
midtri.SetOrg(sortarray[left]);
midtri.SetDest(sortarray[left + 1]);
tri1.SetOrg(sortarray[left + 1]);
tri1.SetDest(sortarray[left]);
tri2.SetOrg(sortarray[left + 2]);
tri2.SetDest(sortarray[left + 1]);
tri3.SetOrg(sortarray[left + 1]);
tri3.SetDest(sortarray[left + 2]);
// All apices are intentionally left NULL.
midtri.Bond(ref tri1);
tri2.Bond(ref tri3);
midtri.Lnext();
tri1.Lprev();
tri2.Lnext();
tri3.Lprev();
midtri.Bond(ref tri3);
tri1.Bond(ref tri2);
midtri.Lnext();
tri1.Lprev();
tri2.Lnext();
tri3.Lprev();
midtri.Bond(ref tri1);
tri2.Bond(ref tri3);
// Ensure that the origin of 'farleft' is sortarray[0].
tri1.Copy(ref farleft);
// Ensure that the destination of 'farright' is sortarray[2].
tri2.Copy(ref farright);
}
else
{
// The three vertices are not collinear; the triangulation is one
// triangle, namely 'midtri'.
midtri.SetOrg(sortarray[left]);
tri1.SetDest(sortarray[left]);
tri3.SetOrg(sortarray[left]);
// Apices of tri1, tri2, and tri3 are left NULL.
if (area > 0.0)
{
// The vertices are in counterclockwise order.
midtri.SetDest(sortarray[left + 1]);
tri1.SetOrg(sortarray[left + 1]);
tri2.SetDest(sortarray[left + 1]);
midtri.SetApex(sortarray[left + 2]);
tri2.SetOrg(sortarray[left + 2]);
tri3.SetDest(sortarray[left + 2]);
}
else
{
// The vertices are in clockwise order.
midtri.SetDest(sortarray[left + 2]);
tri1.SetOrg(sortarray[left + 2]);
tri2.SetDest(sortarray[left + 2]);
midtri.SetApex(sortarray[left + 1]);
tri2.SetOrg(sortarray[left + 1]);
tri3.SetDest(sortarray[left + 1]);
}
// The topology does not depend on how the vertices are ordered.
midtri.Bond(ref tri1);
midtri.Lnext();
midtri.Bond(ref tri2);
midtri.Lnext();
midtri.Bond(ref tri3);
tri1.Lprev();
tri2.Lnext();
tri1.Bond(ref tri2);
tri1.Lprev();
tri3.Lprev();
tri1.Bond(ref tri3);
tri2.Lnext();
tri3.Lprev();
tri2.Bond(ref tri3);
// Ensure that the origin of 'farleft' is sortarray[0].
tri1.Copy(ref farleft);
// Ensure that the destination of 'farright' is sortarray[2].
if (area > 0.0)
{
tri2.Copy(ref farright);
}
else
{
farleft.Lnext(ref farright);
}
}
return;
}
else
{
// Split the vertices in half.
divider = vertices >> 1;
// Recursively triangulate each half.
DivconqRecurse(left, left + divider - 1, 1 - axis, ref farleft, ref innerleft);
DivconqRecurse(left + divider, right, 1 - axis, ref innerright, ref farright);
// Merge the two triangulations into one.
MergeHulls(ref farleft, ref innerleft, ref innerright, ref farright, axis);
}
}
/// <summary>
/// Removes ghost triangles.
/// </summary>
/// <param name="startghost"></param>
/// <returns>Number of vertices on the hull.</returns>
int RemoveGhosts(ref Otri startghost)
{
Otri searchedge = default(Otri);
Otri dissolveedge = default(Otri);
Otri deadtriangle = default(Otri);
Vertex markorg;
int hullsize;
bool noPoly = !mesh.behavior.Poly;
// Find an edge on the convex hull to start point location from.
startghost.Lprev(ref searchedge);
searchedge.Sym();
mesh.dummytri.neighbors[0] = searchedge;
// Remove the bounding box and count the convex hull edges.
startghost.Copy(ref dissolveedge);
hullsize = 0;
do
{
hullsize++;
dissolveedge.Lnext(ref deadtriangle);
dissolveedge.Lprev();
dissolveedge.Sym();
// If no PSLG is involved, set the boundary markers of all the vertices
// on the convex hull. If a PSLG is used, this step is done later.
if (noPoly)
{
// Watch out for the case where all the input vertices are collinear.
if (dissolveedge.tri.id != Mesh.DUMMY)
{
markorg = dissolveedge.Org();
if (markorg.label == 0)
{
markorg.label = 1;
}
}
}
// Remove a bounding triangle from a convex hull triangle.
dissolveedge.Dissolve(mesh.dummytri);
// Find the next bounding triangle.
deadtriangle.Sym(ref dissolveedge);
// Delete the bounding triangle.
mesh.TriangleDealloc(deadtriangle.tri);
}
while (!dissolveedge.Equals(startghost));
return hullsize;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 9c2c3aea8fdba4a288f591cbf028963d
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,192 @@
// -----------------------------------------------------------------------
// <copyright file="Incremental.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Algorithm
{
using System.Collections.Generic;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Builds a delaunay triangulation using the incremental algorithm.
/// </summary>
internal class Incremental : ITriangulator
{
Mesh mesh;
/// <summary>
/// Form a Delaunay triangulation by incrementally inserting vertices.
/// </summary>
/// <returns>Returns the number of edges on the convex hull of the
/// triangulation.</returns>
public IMesh Triangulate(IList<Vertex> points, Configuration config)
{
this.mesh = new Mesh(config);
this.mesh.TransferNodes(points);
Otri starttri = new Otri();
// Create a triangular bounding box.
GetBoundingBox();
foreach (var v in mesh.vertices.Values)
{
starttri.tri = mesh.dummytri;
Osub tmp = default(Osub);
if (mesh.InsertVertex(v, ref starttri, ref tmp, false, false) == InsertVertexResult.Duplicate)
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored.",
"Incremental.Triangulate()");
}
v.type = VertexType.UndeadVertex;
mesh.undeads++;
}
}
// Remove the bounding box.
this.mesh.hullsize = RemoveBox();
return this.mesh;
}
/// <summary>
/// Form an "infinite" bounding triangle to insert vertices into.
/// </summary>
/// <remarks>
/// The vertices at "infinity" are assigned finite coordinates, which are
/// used by the point location routines, but (mostly) ignored by the
/// Delaunay edge flip routines.
/// </remarks>
void GetBoundingBox()
{
Otri inftri = default(Otri); // Handle for the triangular bounding box.
Rectangle box = mesh.bounds;
// Find the width (or height, whichever is larger) of the triangulation.
double width = box.Width;
if (box.Height > width)
{
width = box.Height;
}
if (width == 0.0)
{
width = 1.0;
}
// Create the vertices of the bounding box.
mesh.infvertex1 = new Vertex(box.Left - 50.0 * width, box.Bottom - 40.0 * width);
mesh.infvertex2 = new Vertex(box.Right + 50.0 * width, box.Bottom - 40.0 * width);
mesh.infvertex3 = new Vertex(0.5 * (box.Left + box.Right), box.Top + 60.0 * width);
// Create the bounding box.
mesh.MakeTriangle(ref inftri);
inftri.SetOrg(mesh.infvertex1);
inftri.SetDest(mesh.infvertex2);
inftri.SetApex(mesh.infvertex3);
// Link dummytri to the bounding box so we can always find an
// edge to begin searching (point location) from.
mesh.dummytri.neighbors[0] = inftri;
}
/// <summary>
/// Remove the "infinite" bounding triangle, setting boundary markers as appropriate.
/// </summary>
/// <returns>Returns the number of edges on the convex hull of the triangulation.</returns>
/// <remarks>
/// The triangular bounding box has three boundary triangles (one for each
/// side of the bounding box), and a bunch of triangles fanning out from
/// the three bounding box vertices (one triangle for each edge of the
/// convex hull of the inner mesh). This routine removes these triangles.
/// </remarks>
int RemoveBox()
{
Otri deadtriangle = default(Otri);
Otri searchedge = default(Otri);
Otri checkedge = default(Otri);
Otri nextedge = default(Otri), finaledge = default(Otri), dissolveedge = default(Otri);
Vertex markorg;
int hullsize;
bool noPoly = !mesh.behavior.Poly;
// Find a boundary triangle.
nextedge.tri = mesh.dummytri;
nextedge.orient = 0;
nextedge.Sym();
// Mark a place to stop.
nextedge.Lprev(ref finaledge);
nextedge.Lnext();
nextedge.Sym();
// Find a triangle (on the boundary of the vertex set) that isn't
// a bounding box triangle.
nextedge.Lprev(ref searchedge);
searchedge.Sym();
// Check whether nextedge is another boundary triangle
// adjacent to the first one.
nextedge.Lnext(ref checkedge);
checkedge.Sym();
if (checkedge.tri.id == Mesh.DUMMY)
{
// Go on to the next triangle. There are only three boundary
// triangles, and this next triangle cannot be the third one,
// so it's safe to stop here.
searchedge.Lprev();
searchedge.Sym();
}
// Find a new boundary edge to search from, as the current search
// edge lies on a bounding box triangle and will be deleted.
mesh.dummytri.neighbors[0] = searchedge;
hullsize = -2;
while (!nextedge.Equals(finaledge))
{
hullsize++;
nextedge.Lprev(ref dissolveedge);
dissolveedge.Sym();
// If not using a PSLG, the vertices should be marked now.
// (If using a PSLG, markhull() will do the job.)
if (noPoly)
{
// Be careful! One must check for the case where all the input
// vertices are collinear, and thus all the triangles are part of
// the bounding box. Otherwise, the setvertexmark() call below
// will cause a bad pointer reference.
if (dissolveedge.tri.id != Mesh.DUMMY)
{
markorg = dissolveedge.Org();
if (markorg.label == 0)
{
markorg.label = 1;
}
}
}
// Disconnect the bounding box triangle from the mesh triangle.
dissolveedge.Dissolve(mesh.dummytri);
nextedge.Lnext(ref deadtriangle);
deadtriangle.Sym(ref nextedge);
// Get rid of the bounding box triangle.
mesh.TriangleDealloc(deadtriangle.tri);
// Do we need to turn the corner?
if (nextedge.tri.id == Mesh.DUMMY)
{
// Turn the corner.
dissolveedge.Copy(ref nextedge);
}
}
mesh.TriangleDealloc(finaledge.tri);
return hullsize;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 3ffa994dccc684238af9f51c4b71a053
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,812 @@
// -----------------------------------------------------------------------
// <copyright file="SweepLine.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Algorithm
{
using System;
using System.Collections.Generic;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Tools;
/// <summary>
/// Builds a delaunay triangulation using the sweepline algorithm.
/// </summary>
internal class SweepLine : ITriangulator
{
static int randomseed = 1;
static int SAMPLERATE = 10;
static int randomnation(int choices)
{
randomseed = (randomseed * 1366 + 150889) % 714025;
return randomseed / (714025 / choices + 1);
}
IPredicates predicates;
Mesh mesh;
double xminextreme; // Nonexistent x value used as a flag in sweepline.
List<SplayNode> splaynodes;
public IMesh Triangulate(IList<Vertex> points, Configuration config)
{
this.predicates = config.Predicates();
this.mesh = new Mesh(config);
this.mesh.TransferNodes(points);
// Nonexistent x value used as a flag to mark circle events in sweepline
// Delaunay algorithm.
xminextreme = 10 * mesh.bounds.Left - 9 * mesh.bounds.Right;
SweepEvent[] eventheap;
SweepEvent nextevent;
SweepEvent newevent;
SplayNode splayroot;
Otri bottommost = default(Otri);
Otri searchtri = default(Otri);
Otri fliptri;
Otri lefttri = default(Otri);
Otri righttri = default(Otri);
Otri farlefttri = default(Otri);
Otri farrighttri = default(Otri);
Otri inserttri = default(Otri);
Vertex firstvertex, secondvertex;
Vertex nextvertex, lastvertex;
Vertex connectvertex;
Vertex leftvertex, midvertex, rightvertex;
double lefttest, righttest;
int heapsize;
bool check4events, farrightflag = false;
splaynodes = new List<SplayNode>();
splayroot = null;
heapsize = points.Count;
CreateHeap(out eventheap, heapsize);//, out events, out freeevents);
mesh.MakeTriangle(ref lefttri);
mesh.MakeTriangle(ref righttri);
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
firstvertex = eventheap[0].vertexEvent;
HeapDelete(eventheap, heapsize, 0);
heapsize--;
do
{
if (heapsize == 0)
{
Log.Instance.Error("Input vertices are all identical.", "SweepLine.Triangulate()");
throw new Exception("Input vertices are all identical.");
}
secondvertex = eventheap[0].vertexEvent;
HeapDelete(eventheap, heapsize, 0);
heapsize--;
if ((firstvertex.x == secondvertex.x) &&
(firstvertex.y == secondvertex.y))
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored (ID " + secondvertex.id + ").",
"SweepLine.Triangulate().1");
}
secondvertex.type = VertexType.UndeadVertex;
mesh.undeads++;
}
}
while ((firstvertex.x == secondvertex.x) &&
(firstvertex.y == secondvertex.y));
lefttri.SetOrg(firstvertex);
lefttri.SetDest(secondvertex);
righttri.SetOrg(secondvertex);
righttri.SetDest(firstvertex);
lefttri.Lprev(ref bottommost);
lastvertex = secondvertex;
while (heapsize > 0)
{
nextevent = eventheap[0];
HeapDelete(eventheap, heapsize, 0);
heapsize--;
check4events = true;
if (nextevent.xkey < mesh.bounds.Left)
{
fliptri = nextevent.otriEvent;
fliptri.Oprev(ref farlefttri);
Check4DeadEvent(ref farlefttri, eventheap, ref heapsize);
fliptri.Onext(ref farrighttri);
Check4DeadEvent(ref farrighttri, eventheap, ref heapsize);
if (farlefttri.Equals(bottommost))
{
fliptri.Lprev(ref bottommost);
}
mesh.Flip(ref fliptri);
fliptri.SetApex(null);
fliptri.Lprev(ref lefttri);
fliptri.Lnext(ref righttri);
lefttri.Sym(ref farlefttri);
if (randomnation(SAMPLERATE) == 0)
{
fliptri.Sym();
leftvertex = fliptri.Dest();
midvertex = fliptri.Apex();
rightvertex = fliptri.Org();
splayroot = CircleTopInsert(splayroot, lefttri, leftvertex, midvertex, rightvertex, nextevent.ykey);
}
}
else
{
nextvertex = nextevent.vertexEvent;
if ((nextvertex.x == lastvertex.x) &&
(nextvertex.y == lastvertex.y))
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored (ID " + nextvertex.id + ").",
"SweepLine.Triangulate().2");
}
nextvertex.type = VertexType.UndeadVertex;
mesh.undeads++;
check4events = false;
}
else
{
lastvertex = nextvertex;
splayroot = FrontLocate(splayroot, bottommost, nextvertex, ref searchtri, ref farrightflag);
//bottommost.Copy(ref searchtri);
//farrightflag = false;
//while (!farrightflag && RightOfHyperbola(ref searchtri, nextvertex))
//{
// searchtri.OnextSelf();
// farrightflag = searchtri.Equal(bottommost);
//}
Check4DeadEvent(ref searchtri, eventheap, ref heapsize);
searchtri.Copy(ref farrighttri);
searchtri.Sym(ref farlefttri);
mesh.MakeTriangle(ref lefttri);
mesh.MakeTriangle(ref righttri);
connectvertex = farrighttri.Dest();
lefttri.SetOrg(connectvertex);
lefttri.SetDest(nextvertex);
righttri.SetOrg(nextvertex);
righttri.SetDest(connectvertex);
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref farlefttri);
righttri.Bond(ref farrighttri);
if (!farrightflag && farrighttri.Equals(bottommost))
{
lefttri.Copy(ref bottommost);
}
if (randomnation(SAMPLERATE) == 0)
{
splayroot = SplayInsert(splayroot, lefttri, nextvertex);
}
else if (randomnation(SAMPLERATE) == 0)
{
righttri.Lnext(ref inserttri);
splayroot = SplayInsert(splayroot, inserttri, nextvertex);
}
}
}
if (check4events)
{
leftvertex = farlefttri.Apex();
midvertex = lefttri.Dest();
rightvertex = lefttri.Apex();
lefttest = predicates.CounterClockwise(leftvertex, midvertex, rightvertex);
if (lefttest > 0.0)
{
newevent = new SweepEvent();
newevent.xkey = xminextreme;
newevent.ykey = CircleTop(leftvertex, midvertex, rightvertex, lefttest);
newevent.otriEvent = lefttri;
HeapInsert(eventheap, heapsize, newevent);
heapsize++;
lefttri.SetOrg(new SweepEventVertex(newevent));
}
leftvertex = righttri.Apex();
midvertex = righttri.Org();
rightvertex = farrighttri.Apex();
righttest = predicates.CounterClockwise(leftvertex, midvertex, rightvertex);
if (righttest > 0.0)
{
newevent = new SweepEvent();
newevent.xkey = xminextreme;
newevent.ykey = CircleTop(leftvertex, midvertex, rightvertex, righttest);
newevent.otriEvent = farrighttri;
HeapInsert(eventheap, heapsize, newevent);
heapsize++;
farrighttri.SetOrg(new SweepEventVertex(newevent));
}
}
}
splaynodes.Clear();
bottommost.Lprev();
this.mesh.hullsize = RemoveGhosts(ref bottommost);
return this.mesh;
}
#region Heap
void HeapInsert(SweepEvent[] heap, int heapsize, SweepEvent newevent)
{
double eventx, eventy;
int eventnum;
int parent;
bool notdone;
eventx = newevent.xkey;
eventy = newevent.ykey;
eventnum = heapsize;
notdone = eventnum > 0;
while (notdone)
{
parent = (eventnum - 1) >> 1;
if ((heap[parent].ykey < eventy) ||
((heap[parent].ykey == eventy)
&& (heap[parent].xkey <= eventx)))
{
notdone = false;
}
else
{
heap[eventnum] = heap[parent];
heap[eventnum].heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
}
heap[eventnum] = newevent;
newevent.heapposition = eventnum;
}
void Heapify(SweepEvent[] heap, int heapsize, int eventnum)
{
SweepEvent thisevent;
double eventx, eventy;
int leftchild, rightchild;
int smallest;
bool notdone;
thisevent = heap[eventnum];
eventx = thisevent.xkey;
eventy = thisevent.ykey;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
while (notdone)
{
if ((heap[leftchild].ykey < eventy) ||
((heap[leftchild].ykey == eventy)
&& (heap[leftchild].xkey < eventx)))
{
smallest = leftchild;
}
else
{
smallest = eventnum;
}
rightchild = leftchild + 1;
if (rightchild < heapsize)
{
if ((heap[rightchild].ykey < heap[smallest].ykey) ||
((heap[rightchild].ykey == heap[smallest].ykey)
&& (heap[rightchild].xkey < heap[smallest].xkey)))
{
smallest = rightchild;
}
}
if (smallest == eventnum)
{
notdone = false;
}
else
{
heap[eventnum] = heap[smallest];
heap[eventnum].heapposition = eventnum;
heap[smallest] = thisevent;
thisevent.heapposition = smallest;
eventnum = smallest;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
}
}
}
void HeapDelete(SweepEvent[] heap, int heapsize, int eventnum)
{
SweepEvent moveevent;
double eventx, eventy;
int parent;
bool notdone;
moveevent = heap[heapsize - 1];
if (eventnum > 0)
{
eventx = moveevent.xkey;
eventy = moveevent.ykey;
do
{
parent = (eventnum - 1) >> 1;
if ((heap[parent].ykey < eventy) ||
((heap[parent].ykey == eventy)
&& (heap[parent].xkey <= eventx)))
{
notdone = false;
}
else
{
heap[eventnum] = heap[parent];
heap[eventnum].heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
}
while (notdone);
}
heap[eventnum] = moveevent;
moveevent.heapposition = eventnum;
Heapify(heap, heapsize - 1, eventnum);
}
void CreateHeap(out SweepEvent[] eventheap, int size)
{
Vertex thisvertex;
int maxevents;
int i;
SweepEvent evt;
maxevents = (3 * size) / 2;
eventheap = new SweepEvent[maxevents];
i = 0;
foreach (var v in mesh.vertices.Values)
{
thisvertex = v;
evt = new SweepEvent();
evt.vertexEvent = thisvertex;
evt.xkey = thisvertex.x;
evt.ykey = thisvertex.y;
HeapInsert(eventheap, i++, evt);
}
}
#endregion
#region Splaytree
SplayNode Splay(SplayNode splaytree, Point searchpoint, ref Otri searchtri)
{
SplayNode child, grandchild;
SplayNode lefttree, righttree;
SplayNode leftright;
Vertex checkvertex;
bool rightofroot, rightofchild;
if (splaytree == null)
{
return null;
}
checkvertex = splaytree.keyedge.Dest();
if (checkvertex == splaytree.keydest)
{
rightofroot = RightOfHyperbola(ref splaytree.keyedge, searchpoint);
if (rightofroot)
{
splaytree.keyedge.Copy(ref searchtri);
child = splaytree.rchild;
}
else
{
child = splaytree.lchild;
}
if (child == null)
{
return splaytree;
}
checkvertex = child.keyedge.Dest();
if (checkvertex != child.keydest)
{
child = Splay(child, searchpoint, ref searchtri);
if (child == null)
{
if (rightofroot)
{
splaytree.rchild = null;
}
else
{
splaytree.lchild = null;
}
return splaytree;
}
}
rightofchild = RightOfHyperbola(ref child.keyedge, searchpoint);
if (rightofchild)
{
child.keyedge.Copy(ref searchtri);
grandchild = Splay(child.rchild, searchpoint, ref searchtri);
child.rchild = grandchild;
}
else
{
grandchild = Splay(child.lchild, searchpoint, ref searchtri);
child.lchild = grandchild;
}
if (grandchild == null)
{
if (rightofroot)
{
splaytree.rchild = child.lchild;
child.lchild = splaytree;
}
else
{
splaytree.lchild = child.rchild;
child.rchild = splaytree;
}
return child;
}
if (rightofchild)
{
if (rightofroot)
{
splaytree.rchild = child.lchild;
child.lchild = splaytree;
}
else
{
splaytree.lchild = grandchild.rchild;
grandchild.rchild = splaytree;
}
child.rchild = grandchild.lchild;
grandchild.lchild = child;
}
else
{
if (rightofroot)
{
splaytree.rchild = grandchild.lchild;
grandchild.lchild = splaytree;
}
else
{
splaytree.lchild = child.rchild;
child.rchild = splaytree;
}
child.lchild = grandchild.rchild;
grandchild.rchild = child;
}
return grandchild;
}
else
{
lefttree = Splay(splaytree.lchild, searchpoint, ref searchtri);
righttree = Splay(splaytree.rchild, searchpoint, ref searchtri);
splaynodes.Remove(splaytree);
if (lefttree == null)
{
return righttree;
}
else if (righttree == null)
{
return lefttree;
}
else if (lefttree.rchild == null)
{
lefttree.rchild = righttree.lchild;
righttree.lchild = lefttree;
return righttree;
}
else if (righttree.lchild == null)
{
righttree.lchild = lefttree.rchild;
lefttree.rchild = righttree;
return lefttree;
}
else
{
// printf("Holy Toledo!!!\n");
leftright = lefttree.rchild;
while (leftright.rchild != null)
{
leftright = leftright.rchild;
}
leftright.rchild = righttree;
return lefttree;
}
}
}
SplayNode SplayInsert(SplayNode splayroot, Otri newkey, Point searchpoint)
{
SplayNode newsplaynode;
newsplaynode = new SplayNode(); //poolalloc(m.splaynodes);
splaynodes.Add(newsplaynode);
newkey.Copy(ref newsplaynode.keyedge);
newsplaynode.keydest = newkey.Dest();
if (splayroot == null)
{
newsplaynode.lchild = null;
newsplaynode.rchild = null;
}
else if (RightOfHyperbola(ref splayroot.keyedge, searchpoint))
{
newsplaynode.lchild = splayroot;
newsplaynode.rchild = splayroot.rchild;
splayroot.rchild = null;
}
else
{
newsplaynode.lchild = splayroot.lchild;
newsplaynode.rchild = splayroot;
splayroot.lchild = null;
}
return newsplaynode;
}
SplayNode FrontLocate(SplayNode splayroot, Otri bottommost, Vertex searchvertex,
ref Otri searchtri, ref bool farright)
{
bool farrightflag;
bottommost.Copy(ref searchtri);
splayroot = Splay(splayroot, searchvertex, ref searchtri);
farrightflag = false;
while (!farrightflag && RightOfHyperbola(ref searchtri, searchvertex))
{
searchtri.Onext();
farrightflag = searchtri.Equals(bottommost);
}
farright = farrightflag;
return splayroot;
}
SplayNode CircleTopInsert(SplayNode splayroot, Otri newkey,
Vertex pa, Vertex pb, Vertex pc, double topy)
{
double ccwabc;
double xac, yac, xbc, ybc;
double aclen2, bclen2;
Point searchpoint = new Point(); // TODO: mesh.nextras
Otri dummytri = default(Otri);
ccwabc = predicates.CounterClockwise(pa, pb, pc);
xac = pa.x - pc.x;
yac = pa.y - pc.y;
xbc = pb.x - pc.x;
ybc = pb.y - pc.y;
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
searchpoint.x = pc.x - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
searchpoint.y = topy;
return SplayInsert(Splay(splayroot, searchpoint, ref dummytri), newkey, searchpoint);
}
#endregion
bool RightOfHyperbola(ref Otri fronttri, Point newsite)
{
Vertex leftvertex, rightvertex;
double dxa, dya, dxb, dyb;
Statistic.HyperbolaCount++;
leftvertex = fronttri.Dest();
rightvertex = fronttri.Apex();
if ((leftvertex.y < rightvertex.y) ||
((leftvertex.y == rightvertex.y) &&
(leftvertex.x < rightvertex.x)))
{
if (newsite.x >= rightvertex.x)
{
return true;
}
}
else
{
if (newsite.x <= leftvertex.x)
{
return false;
}
}
dxa = leftvertex.x - newsite.x;
dya = leftvertex.y - newsite.y;
dxb = rightvertex.x - newsite.x;
dyb = rightvertex.y - newsite.y;
return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
}
double CircleTop(Vertex pa, Vertex pb, Vertex pc, double ccwabc)
{
double xac, yac, xbc, ybc, xab, yab;
double aclen2, bclen2, ablen2;
Statistic.CircleTopCount++;
xac = pa.x - pc.x;
yac = pa.y - pc.y;
xbc = pb.x - pc.x;
ybc = pb.y - pc.y;
xab = pa.x - pb.x;
yab = pa.y - pb.y;
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
ablen2 = xab * xab + yab * yab;
return pc.y + (xac * bclen2 - xbc * aclen2 + Math.Sqrt(aclen2 * bclen2 * ablen2)) / (2.0 * ccwabc);
}
void Check4DeadEvent(ref Otri checktri, SweepEvent[] eventheap, ref int heapsize)
{
SweepEvent deadevent;
SweepEventVertex eventvertex;
int eventnum = -1;
eventvertex = checktri.Org() as SweepEventVertex;
if (eventvertex != null)
{
deadevent = eventvertex.evt;
eventnum = deadevent.heapposition;
HeapDelete(eventheap, heapsize, eventnum);
heapsize--;
checktri.SetOrg(null);
}
}
/// <summary>
/// Removes ghost triangles.
/// </summary>
/// <param name="startghost"></param>
/// <returns>Number of vertices on the hull.</returns>
int RemoveGhosts(ref Otri startghost)
{
Otri searchedge = default(Otri);
Otri dissolveedge = default(Otri);
Otri deadtriangle = default(Otri);
Vertex markorg;
int hullsize;
bool noPoly = !mesh.behavior.Poly;
var dummytri = mesh.dummytri;
// Find an edge on the convex hull to start point location from.
startghost.Lprev(ref searchedge);
searchedge.Sym();
dummytri.neighbors[0] = searchedge;
// Remove the bounding box and count the convex hull edges.
startghost.Copy(ref dissolveedge);
hullsize = 0;
do
{
hullsize++;
dissolveedge.Lnext(ref deadtriangle);
dissolveedge.Lprev();
dissolveedge.Sym();
// If no PSLG is involved, set the boundary markers of all the vertices
// on the convex hull. If a PSLG is used, this step is done later.
if (noPoly)
{
// Watch out for the case where all the input vertices are collinear.
if (dissolveedge.tri.id != Mesh.DUMMY)
{
markorg = dissolveedge.Org();
if (markorg.label == 0)
{
markorg.label = 1;
}
}
}
// Remove a bounding triangle from a convex hull triangle.
dissolveedge.Dissolve(dummytri);
// Find the next bounding triangle.
deadtriangle.Sym(ref dissolveedge);
// Delete the bounding triangle.
mesh.TriangleDealloc(deadtriangle.tri);
}
while (!dissolveedge.Equals(startghost));
return hullsize;
}
#region Internal classes
/// <summary>
/// A node in a heap used to store events for the sweepline Delaunay algorithm.
/// </summary>
/// <remarks>
/// Only used in the sweepline algorithm.
///
/// Nodes do not point directly to their parents or children in the heap. Instead, each
/// node knows its position in the heap, and can look up its parent and children in a
/// separate array. To distinguish site events from circle events, all circle events are
/// given an invalid (smaller than 'xmin') x-coordinate 'xkey'.
/// </remarks>
class SweepEvent
{
public double xkey, ykey; // Coordinates of the event.
public Vertex vertexEvent; // Vertex event.
public Otri otriEvent; // Circle event.
public int heapposition; // Marks this event's position in the heap.
}
/// <summary>
/// Introducing a new class which aggregates a sweep event is the easiest way
/// to handle the pointer magic of the original code (casting a sweep event
/// to vertex etc.).
/// </summary>
class SweepEventVertex : Vertex
{
public SweepEvent evt;
public SweepEventVertex(SweepEvent e)
{
evt = e;
}
}
/// <summary>
/// A node in the splay tree.
/// </summary>
/// <remarks>
/// Only used in the sweepline algorithm.
///
/// Each node holds an oriented ghost triangle that represents a boundary edge
/// of the growing triangulation. When a circle event covers two boundary edges
/// with a triangle, so that they are no longer boundary edges, those edges are
/// not immediately deleted from the tree; rather, they are lazily deleted when
/// they are next encountered. (Since only a random sample of boundary edges are
/// kept in the tree, lazy deletion is faster.) 'keydest' is used to verify that
/// a triangle is still the same as when it entered the splay tree; if it has
/// been rotated (due to a circle event), it no longer represents a boundary
/// edge and should be deleted.
/// </remarks>
class SplayNode
{
public Otri keyedge; // Lprev of an edge on the front.
public Vertex keydest; // Used to verify that splay node is still live.
public SplayNode lchild, rchild; // Children in splay tree.
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 0e71212805f8c4fc7a7db8dd552b73a6
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: efa4ba0c38e16414f80d3ccfb6cbd821
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,40 @@
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
/// <summary>
/// Mesh constraint options for polygon triangulation.
/// </summary>
internal class ConstraintOptions
{
// TODO: remove ConstraintOptions.UseRegions
/// <summary>
/// Gets or sets a value indicating whether to use regions.
/// </summary>
[System.Obsolete("Not used anywhere, will be removed in beta 4.")]
public bool UseRegions { get; set; }
/// <summary>
/// Gets or sets a value indicating whether to create a Conforming
/// Delaunay triangulation.
/// </summary>
public bool ConformingDelaunay { get; set; }
/// <summary>
/// Gets or sets a value indicating whether to enclose the convex
/// hull with segments.
/// </summary>
public bool Convex { get; set; }
/// <summary>
/// Gets or sets a flag indicating whether to suppress boundary
/// segment splitting.
/// </summary>
/// <remarks>
/// 0 = split segments (default)
/// 1 = no new vertices on the boundary
/// 2 = prevent all segment splitting, including internal boundaries
/// </remarks>
public int SegmentSplitting { get; set; }
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 8bb3407583ec744c0ba8307cebefdc1d
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,489 @@
// -----------------------------------------------------------------------
// <copyright file="Converter.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using System;
using System.Collections.Generic;
using System.Linq;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Topology.DCEL;
using HVertex = Animation.TriangleNet.Topology.DCEL.Vertex;
using TVertex = Animation.TriangleNet.Geometry.Vertex;
/// <summary>
/// The Converter class provides methods for mesh reconstruction and conversion.
/// </summary>
internal static class Converter
{
#region Triangle mesh conversion
/// <summary>
/// Reconstruct a triangulation from its raw data representation.
/// </summary>
internal static Mesh ToMesh(Polygon polygon, IList<ITriangle> triangles)
{
return ToMesh(polygon, triangles.ToArray());
}
/// <summary>
/// Reconstruct a triangulation from its raw data representation.
/// </summary>
internal static Mesh ToMesh(Polygon polygon, ITriangle[] triangles)
{
Otri tri = default(Otri);
Osub subseg = default(Osub);
int i = 0;
int elements = triangles == null ? 0 : triangles.Length;
int segments = polygon.Segments.Count;
// TODO: Configuration should be a function argument.
var mesh = new Mesh(new Configuration());
mesh.TransferNodes(polygon.Points);
mesh.regions.AddRange(polygon.Regions);
mesh.behavior.useRegions = polygon.Regions.Count > 0;
if (polygon.Segments.Count > 0)
{
mesh.behavior.Poly = true;
mesh.holes.AddRange(polygon.Holes);
}
// Create the triangles.
for (i = 0; i < elements; i++)
{
mesh.MakeTriangle(ref tri);
}
if (mesh.behavior.Poly)
{
mesh.insegments = segments;
// Create the subsegments.
for (i = 0; i < segments; i++)
{
mesh.MakeSegment(ref subseg);
}
}
var vertexarray = SetNeighbors(mesh, triangles);
SetSegments(mesh, polygon, vertexarray);
return mesh;
}
/// <summary>
/// Finds the adjacencies between triangles by forming a stack of triangles for
/// each vertex. Each triangle is on three different stacks simultaneously.
/// </summary>
private static List<Otri>[] SetNeighbors(Mesh mesh, ITriangle[] triangles)
{
Otri tri = default(Otri);
Otri triangleleft = default(Otri);
Otri checktri = default(Otri);
Otri checkleft = default(Otri);
Otri nexttri;
TVertex tdest, tapex;
TVertex checkdest, checkapex;
int[] corner = new int[3];
int aroundvertex;
int i;
// Allocate a temporary array that maps each vertex to some adjacent triangle.
var vertexarray = new List<Otri>[mesh.vertices.Count];
// Each vertex is initially unrepresented.
for (i = 0; i < mesh.vertices.Count; i++)
{
Otri tmp = default(Otri);
tmp.tri = mesh.dummytri;
vertexarray[i] = new List<Otri>(3);
vertexarray[i].Add(tmp);
}
i = 0;
// Read the triangles from the .ele file, and link
// together those that share an edge.
foreach (var item in mesh.triangles)
{
tri.tri = item;
// Copy the triangle's three corners.
for (int j = 0; j < 3; j++)
{
corner[j] = triangles[i].GetVertexID(j);
if ((corner[j] < 0) || (corner[j] >= mesh.invertices))
{
Log.Instance.Error("Triangle has an invalid vertex index.", "MeshReader.Reconstruct()");
throw new Exception("Triangle has an invalid vertex index.");
}
}
// Read the triangle's attributes.
tri.tri.label = triangles[i].Label;
// TODO: VarArea
if (mesh.behavior.VarArea)
{
tri.tri.area = triangles[i].Area;
}
// Set the triangle's vertices.
tri.orient = 0;
tri.SetOrg(mesh.vertices[corner[0]]);
tri.SetDest(mesh.vertices[corner[1]]);
tri.SetApex(mesh.vertices[corner[2]]);
// Try linking the triangle to others that share these vertices.
for (tri.orient = 0; tri.orient < 3; tri.orient++)
{
// Take the number for the origin of triangleloop.
aroundvertex = corner[tri.orient];
int index = vertexarray[aroundvertex].Count - 1;
// Look for other triangles having this vertex.
nexttri = vertexarray[aroundvertex][index];
// Push the current triangle onto the stack.
vertexarray[aroundvertex].Add(tri);
checktri = nexttri;
if (checktri.tri.id != Mesh.DUMMY)
{
tdest = tri.Dest();
tapex = tri.Apex();
// Look for other triangles that share an edge.
do
{
checkdest = checktri.Dest();
checkapex = checktri.Apex();
if (tapex == checkdest)
{
// The two triangles share an edge; bond them together.
tri.Lprev(ref triangleleft);
triangleleft.Bond(ref checktri);
}
if (tdest == checkapex)
{
// The two triangles share an edge; bond them together.
checktri.Lprev(ref checkleft);
tri.Bond(ref checkleft);
}
// Find the next triangle in the stack.
index--;
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
}
while (checktri.tri.id != Mesh.DUMMY);
}
}
i++;
}
return vertexarray;
}
/// <summary>
/// Finds the adjacencies between triangles and subsegments.
/// </summary>
private static void SetSegments(Mesh mesh, Polygon polygon, List<Otri>[] vertexarray)
{
Otri checktri = default(Otri);
Otri nexttri; // Triangle
TVertex checkdest;
Otri checkneighbor = default(Otri);
Osub subseg = default(Osub);
Otri prevlink; // Triangle
TVertex tmp;
TVertex sorg, sdest;
bool notfound;
//bool segmentmarkers = false;
int boundmarker;
int aroundvertex;
int i;
int hullsize = 0;
// Prepare to count the boundary edges.
if (mesh.behavior.Poly)
{
// Link the segments to their neighboring triangles.
boundmarker = 0;
i = 0;
foreach (var item in mesh.subsegs.Values)
{
subseg.seg = item;
sorg = polygon.Segments[i].GetVertex(0);
sdest = polygon.Segments[i].GetVertex(1);
boundmarker = polygon.Segments[i].Label;
if ((sorg.id < 0 || sorg.id >= mesh.invertices) || (sdest.id < 0 || sdest.id >= mesh.invertices))
{
Log.Instance.Error("Segment has an invalid vertex index.", "MeshReader.Reconstruct()");
throw new Exception("Segment has an invalid vertex index.");
}
// set the subsegment's vertices.
subseg.orient = 0;
subseg.SetOrg(sorg);
subseg.SetDest(sdest);
subseg.SetSegOrg(sorg);
subseg.SetSegDest(sdest);
subseg.seg.boundary = boundmarker;
// Try linking the subsegment to triangles that share these vertices.
for (subseg.orient = 0; subseg.orient < 2; subseg.orient++)
{
// Take the number for the destination of subsegloop.
aroundvertex = subseg.orient == 1 ? sorg.id : sdest.id;
int index = vertexarray[aroundvertex].Count - 1;
// Look for triangles having this vertex.
prevlink = vertexarray[aroundvertex][index];
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
tmp = subseg.Org();
notfound = true;
// Look for triangles having this edge. Note that I'm only
// comparing each triangle's destination with the subsegment;
// each triangle's apex is handled through a different vertex.
// Because each triangle appears on three vertices' lists, each
// occurrence of a triangle on a list can (and does) represent
// an edge. In this way, most edges are represented twice, and
// every triangle-subsegment bond is represented once.
while (notfound && (checktri.tri.id != Mesh.DUMMY))
{
checkdest = checktri.Dest();
if (tmp == checkdest)
{
// We have a match. Remove this triangle from the list.
//prevlink = vertexarray[aroundvertex][index];
vertexarray[aroundvertex].Remove(prevlink);
// Bond the subsegment to the triangle.
checktri.SegBond(ref subseg);
// Check if this is a boundary edge.
checktri.Sym(ref checkneighbor);
if (checkneighbor.tri.id == Mesh.DUMMY)
{
// The next line doesn't insert a subsegment (because there's
// already one there), but it sets the boundary markers of
// the existing subsegment and its vertices.
mesh.InsertSubseg(ref checktri, 1);
hullsize++;
}
notfound = false;
}
index--;
// Find the next triangle in the stack.
prevlink = vertexarray[aroundvertex][index];
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
}
}
i++;
}
}
// Mark the remaining edges as not being attached to any subsegment.
// Also, count the (yet uncounted) boundary edges.
for (i = 0; i < mesh.vertices.Count; i++)
{
// Search the stack of triangles adjacent to a vertex.
int index = vertexarray[i].Count - 1;
nexttri = vertexarray[i][index];
checktri = nexttri;
while (checktri.tri.id != Mesh.DUMMY)
{
// Find the next triangle in the stack before this
// information gets overwritten.
index--;
nexttri = vertexarray[i][index];
// No adjacent subsegment. (This overwrites the stack info.)
checktri.SegDissolve(mesh.dummysub);
checktri.Sym(ref checkneighbor);
if (checkneighbor.tri.id == Mesh.DUMMY)
{
mesh.InsertSubseg(ref checktri, 1);
hullsize++;
}
checktri = nexttri;
}
}
mesh.hullsize = hullsize;
}
#endregion
#region DCEL conversion
internal static DcelMesh ToDCEL(Mesh mesh)
{
var dcel = new DcelMesh();
var vertices = new HVertex[mesh.vertices.Count];
var faces = new Face[mesh.triangles.Count];
dcel.HalfEdges.Capacity = 2 * mesh.NumberOfEdges;
mesh.Renumber();
HVertex vertex;
foreach (var v in mesh.vertices.Values)
{
vertex = new HVertex(v.x, v.y);
vertex.id = v.id;
vertex.label = v.label;
vertices[v.id] = vertex;
}
// Maps a triangle to its 3 edges (used to set next pointers).
var map = new List<HalfEdge>[mesh.triangles.Count];
Face face;
foreach (var t in mesh.triangles)
{
face = new Face(null);
face.id = t.id;
faces[t.id] = face;
map[t.id] = new List<HalfEdge>(3);
}
Otri tri = default(Otri), neighbor = default(Otri);
Animation.TriangleNet.Geometry.Vertex org, dest;
int id, nid, count = mesh.triangles.Count;
HalfEdge edge, twin, next;
var edges = dcel.HalfEdges;
// Count half-edges (edge ids).
int k = 0;
// Maps a vertex to its leaving boundary edge.
var boundary = new Dictionary<int, HalfEdge>();
foreach (var t in mesh.triangles)
{
id = t.id;
tri.tri = t;
for (int i = 0; i < 3; i++)
{
tri.orient = i;
tri.Sym(ref neighbor);
nid = neighbor.tri.id;
if (id < nid || nid < 0)
{
face = faces[id];
// Get the endpoints of the current triangle edge.
org = tri.Org();
dest = tri.Dest();
// Create half-edges.
edge = new HalfEdge(vertices[org.id], face);
twin = new HalfEdge(vertices[dest.id], nid < 0 ? Face.Empty : faces[nid]);
map[id].Add(edge);
if (nid >= 0)
{
map[nid].Add(twin);
}
else
{
boundary.Add(dest.id, twin);
}
// Set leaving edges.
edge.origin.leaving = edge;
twin.origin.leaving = twin;
// Set twin edges.
edge.twin = twin;
twin.twin = edge;
edge.id = k++;
twin.id = k++;
edges.Add(edge);
edges.Add(twin);
}
}
}
// Set next pointers for each triangle face.
foreach (var t in map)
{
edge = t[0];
next = t[1];
if (edge.twin.origin.id == next.origin.id)
{
edge.next = next;
next.next = t[2];
t[2].next = edge;
}
else
{
edge.next = t[2];
next.next = edge;
t[2].next = next;
}
}
// Resolve boundary edges.
foreach (var e in boundary.Values)
{
e.next = boundary[e.twin.origin.id];
}
dcel.Vertices.AddRange(vertices);
dcel.Faces.AddRange(faces);
return dcel;
}
#endregion
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 5e1a1f401d8254b9386c06b5f3e122a4
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: a36d23163bf694f5b9953efa040989db
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,37 @@
// -----------------------------------------------------------------------
// <copyright file="BadSubseg.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Data
{
using System;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Topology;
/// <summary>
/// A queue used to store encroached subsegments.
/// </summary>
/// <remarks>
/// Each subsegment's vertices are stored so that we can check whether a
/// subsegment is still the same.
/// </remarks>
class BadSubseg
{
public Osub subseg; // An encroached subsegment.
public Vertex org, dest; // Its two vertices.
public override int GetHashCode()
{
return subseg.seg.hash;
}
public override string ToString()
{
return String.Format("B-SID {0}", subseg.seg.hash);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: ab0e12b6f8d3e4699af8cc8018397a8d
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,195 @@
// -----------------------------------------------------------------------
// <copyright file="BadTriQueue.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Data
{
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Topology;
/// <summary>
/// A (priority) queue for bad triangles.
/// </summary>
/// <remarks>
// The queue is actually a set of 4096 queues. I use multiple queues to
// give priority to smaller angles. I originally implemented a heap, but
// the queues are faster by a larger margin than I'd suspected.
/// </remarks>
class BadTriQueue
{
const double SQRT2 = 1.4142135623730950488016887242096980785696718753769480732;
public int Count { get { return this.count; } }
// Variables that maintain the bad triangle queues. The queues are
// ordered from 4095 (highest priority) to 0 (lowest priority).
BadTriangle[] queuefront;
BadTriangle[] queuetail;
int[] nextnonemptyq;
int firstnonemptyq;
int count;
public BadTriQueue()
{
queuefront = new BadTriangle[4096];
queuetail = new BadTriangle[4096];
nextnonemptyq = new int[4096];
firstnonemptyq = -1;
count = 0;
}
/// <summary>
/// Add a bad triangle data structure to the end of a queue.
/// </summary>
/// <param name="badtri">The bad triangle to enqueue.</param>
public void Enqueue(BadTriangle badtri)
{
double length, multiplier;
int exponent, expincrement;
int queuenumber;
int posexponent;
int i;
this.count++;
// Determine the appropriate queue to put the bad triangle into.
// Recall that the key is the square of its shortest edge length.
if (badtri.key >= 1.0)
{
length = badtri.key;
posexponent = 1;
}
else
{
// 'badtri.key' is 2.0 to a negative exponent, so we'll record that
// fact and use the reciprocal of 'badtri.key', which is > 1.0.
length = 1.0 / badtri.key;
posexponent = 0;
}
// 'length' is approximately 2.0 to what exponent? The following code
// determines the answer in time logarithmic in the exponent.
exponent = 0;
while (length > 2.0)
{
// Find an approximation by repeated squaring of two.
expincrement = 1;
multiplier = 0.5;
while (length * multiplier * multiplier > 1.0)
{
expincrement *= 2;
multiplier *= multiplier;
}
// Reduce the value of 'length', then iterate if necessary.
exponent += expincrement;
length *= multiplier;
}
// 'length' is approximately squareroot(2.0) to what exponent?
exponent = 2 * exponent + (length > SQRT2 ? 1 : 0);
// 'exponent' is now in the range 0...2047 for IEEE double precision.
// Choose a queue in the range 0...4095. The shortest edges have the
// highest priority (queue 4095).
if (posexponent > 0)
{
queuenumber = 2047 - exponent;
}
else
{
queuenumber = 2048 + exponent;
}
// Are we inserting into an empty queue?
if (queuefront[queuenumber] == null)
{
// Yes, we are inserting into an empty queue.
// Will this become the highest-priority queue?
if (queuenumber > firstnonemptyq)
{
// Yes, this is the highest-priority queue.
nextnonemptyq[queuenumber] = firstnonemptyq;
firstnonemptyq = queuenumber;
}
else
{
// No, this is not the highest-priority queue.
// Find the queue with next higher priority.
i = queuenumber + 1;
while (queuefront[i] == null)
{
i++;
}
// Mark the newly nonempty queue as following a higher-priority queue.
nextnonemptyq[queuenumber] = nextnonemptyq[i];
nextnonemptyq[i] = queuenumber;
}
// Put the bad triangle at the beginning of the (empty) queue.
queuefront[queuenumber] = badtri;
}
else
{
// Add the bad triangle to the end of an already nonempty queue.
queuetail[queuenumber].next = badtri;
}
// Maintain a pointer to the last triangle of the queue.
queuetail[queuenumber] = badtri;
// Newly enqueued bad triangle has no successor in the queue.
badtri.next = null;
}
/// <summary>
/// Add a bad triangle to the end of a queue.
/// </summary>
/// <param name="enqtri"></param>
/// <param name="minedge"></param>
/// <param name="apex"></param>
/// <param name="org"></param>
/// <param name="dest"></param>
public void Enqueue(ref Otri enqtri, double minedge, Vertex apex, Vertex org, Vertex dest)
{
// Allocate space for the bad triangle.
BadTriangle newbad = new BadTriangle();
newbad.poortri = enqtri;
newbad.key = minedge;
newbad.apex = apex;
newbad.org = org;
newbad.dest = dest;
Enqueue(newbad);
}
/// <summary>
/// Remove a triangle from the front of the queue.
/// </summary>
/// <returns></returns>
public BadTriangle Dequeue()
{
// If no queues are nonempty, return NULL.
if (firstnonemptyq < 0)
{
return null;
}
this.count--;
// Find the first triangle of the highest-priority queue.
BadTriangle result = queuefront[firstnonemptyq];
// Remove the triangle from the queue.
queuefront[firstnonemptyq] = result.next;
// If this queue is now empty, note the new highest-priority
// nonempty queue.
if (result == queuetail[firstnonemptyq])
{
firstnonemptyq = nextnonemptyq[firstnonemptyq];
}
return result;
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 427677fae20f0460e9d05b080a3d93ad
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,35 @@
// -----------------------------------------------------------------------
// <copyright file="BadTriangle.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Data
{
using System;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.Topology;
/// <summary>
/// A queue used to store bad triangles.
/// </summary>
/// <remarks>
/// The key is the square of the cosine of the smallest angle of the triangle.
/// Each triangle's vertices are stored so that one can check whether a
/// triangle is still the same.
/// </remarks>
class BadTriangle
{
public Otri poortri; // A skinny or too-large triangle.
public double key; // cos^2 of smallest (apical) angle.
public Vertex org, dest, apex; // Its three vertices.
public BadTriangle next; // Pointer to next bad triangle.
public override string ToString()
{
return String.Format("B-TID {0}", poortri.tri.hash);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 99e6114d2bbce43ca94c406f19ba2eaf
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,234 @@
// -----------------------------------------------------------------------
// <copyright file="GenericMesher.cs">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using System;
using System.Collections.Generic;
using Animation.TriangleNet.Geometry;
using Animation.TriangleNet.IO;
using Animation.TriangleNet.Meshing.Algorithm;
/// <summary>
/// Create meshes of point sets or polygons.
/// </summary>
internal class GenericMesher
{
Configuration config;
ITriangulator triangulator;
public GenericMesher()
: this(new Dwyer(), new Configuration())
{
}
public GenericMesher(ITriangulator triangulator)
: this(triangulator, new Configuration())
{
}
public GenericMesher(Configuration config)
: this(new Dwyer(), config)
{
}
public GenericMesher(ITriangulator triangulator, Configuration config)
{
this.config = config;
this.triangulator = triangulator;
}
/// <inheritdoc />
public IMesh Triangulate(IList<Vertex> points)
{
return triangulator.Triangulate(points, config);
}
/// <inheritdoc />
public IMesh Triangulate(IPolygon polygon)
{
return Triangulate(polygon, null, null);
}
/// <inheritdoc />
public IMesh Triangulate(IPolygon polygon, ConstraintOptions options)
{
return Triangulate(polygon, options, null);
}
/// <inheritdoc />
public IMesh Triangulate(IPolygon polygon, QualityOptions quality)
{
return Triangulate(polygon, null, quality);
}
/// <inheritdoc />
public IMesh Triangulate(IPolygon polygon, ConstraintOptions options, QualityOptions quality)
{
var mesh = (Mesh)triangulator.Triangulate(polygon.Points, config);
var cmesher = new ConstraintMesher(mesh, config);
var qmesher = new QualityMesher(mesh, config);
mesh.SetQualityMesher(qmesher);
// Insert segments.
cmesher.Apply(polygon, options);
// Refine mesh.
qmesher.Apply(quality);
return mesh;
}
/// <summary>
/// Generates a structured mesh with bounds [0, 0, width, height].
/// </summary>
/// <param name="width">Width of the mesh (must be > 0).</param>
/// <param name="height">Height of the mesh (must be > 0).</param>
/// <param name="nx">Number of segments in x direction.</param>
/// <param name="ny">Number of segments in y direction.</param>
/// <returns>Mesh</returns>
internal static IMesh StructuredMesh(double width, double height, int nx, int ny)
{
if (width <= 0.0)
{
throw new ArgumentException("width");
}
if (height <= 0.0)
{
throw new ArgumentException("height");
}
return StructuredMesh(new Rectangle(0.0, 0.0, width, height), nx, ny);
}
/// <summary>
/// Generates a structured mesh.
/// </summary>
/// <param name="bounds">Bounds of the mesh.</param>
/// <param name="nx">Number of segments in x direction.</param>
/// <param name="ny">Number of segments in y direction.</param>
/// <returns>Mesh</returns>
internal static IMesh StructuredMesh(Rectangle bounds, int nx, int ny)
{
var polygon = new Polygon((nx + 1) * (ny + 1));
double x, y, dx, dy, left, bottom;
dx = bounds.Width / nx;
dy = bounds.Height / ny;
left = bounds.Left;
bottom = bounds.Bottom;
int i, j, k, l, n = 0;
// Add vertices.
var points = new Vertex[(nx + 1) * (ny + 1)];
for (i = 0; i <= nx; i++)
{
x = left + i * dx;
for (j = 0; j <= ny; j++)
{
y = bottom + j * dy;
points[n++] = new Vertex(x, y);
}
}
polygon.Points.AddRange(points);
n = 0;
// Set vertex hash and id.
foreach (var v in points)
{
v.hash = v.id = n++;
}
// Add boundary segments.
var segments = polygon.Segments;
segments.Capacity = 2 * (nx + ny);
Vertex a, b;
for (j = 0; j < ny; j++)
{
// Left
a = points[j];
b = points[j + 1];
segments.Add(new Segment(a, b, 1));
a.Label = b.Label = 1;
// Right
a = points[nx * (ny + 1) + j];
b = points[nx * (ny + 1) + (j + 1)];
segments.Add(new Segment(a, b, 1));
a.Label = b.Label = 1;
}
for (i = 0; i < nx; i++)
{
// Bottom
a = points[(ny + 1) * i];
b = points[(ny + 1) * (i + 1)];
segments.Add(new Segment(a, b, 1));
a.Label = b.Label = 1;
// Top
a = points[ny + (ny + 1) * i];
b = points[ny + (ny + 1) * (i + 1)];
segments.Add(new Segment(a, b, 1));
a.Label = b.Label = 1;
}
// Add triangles.
var triangles = new InputTriangle[2 * nx * ny];
n = 0;
for (i = 0; i < nx; i++)
{
for (j = 0; j < ny; j++)
{
k = j + (ny + 1) * i;
l = j + (ny + 1) * (i + 1);
// Create 2 triangles in rectangle [k, l, l + 1, k + 1].
if ((i + j) % 2 == 0)
{
// Diagonal from bottom left to top right.
triangles[n++] = new InputTriangle(k, l, l + 1);
triangles[n++] = new InputTriangle(k, l + 1, k + 1);
}
else
{
// Diagonal from top left to bottom right.
triangles[n++] = new InputTriangle(k, l, k + 1);
triangles[n++] = new InputTriangle(l, l + 1, k + 1);
}
}
}
return Converter.ToMesh(polygon, triangles);
}
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 4da748bcb2b2d41bbad9ec2561d1d2e9
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,26 @@
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using Animation.TriangleNet.Geometry;
/// <summary>
/// Interface for polygon triangulation.
/// </summary>
internal interface IConstraintMesher
{
/// <summary>
/// Triangulates a polygon.
/// </summary>
/// <param name="polygon">The polygon.</param>
/// <returns>Mesh</returns>
IMesh Triangulate(IPolygon polygon);
/// <summary>
/// Triangulates a polygon, applying constraint options.
/// </summary>
/// <param name="polygon">The polygon.</param>
/// <param name="options">Constraint options.</param>
/// <returns>Mesh</returns>
IMesh Triangulate(IPolygon polygon, ConstraintOptions options);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 4cd626f08811c47b092c491b658d4ef1
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,57 @@
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using System.Collections.Generic;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Mesh interface.
/// </summary>
internal interface IMesh
{
/// <summary>
/// Gets the vertices of the mesh.
/// </summary>
ICollection<Vertex> Vertices { get; }
/// <summary>
/// Gets the edges of the mesh.
/// </summary>
IEnumerable<Edge> Edges { get; }
/// <summary>
/// Gets the segments (constraint edges) of the mesh.
/// </summary>
ICollection<SubSegment> Segments { get; }
/// <summary>
/// Gets the triangles of the mesh.
/// </summary>
ICollection<Triangle> Triangles { get; }
/// <summary>
/// Gets the holes of the mesh.
/// </summary>
IList<Point> Holes { get; }
/// <summary>
/// Gets the bounds of the mesh.
/// </summary>
Rectangle Bounds { get; }
/// <summary>
/// Renumber mesh vertices and triangles.
/// </summary>
void Renumber();
/// <summary>
/// Refine the mesh.
/// </summary>
/// <param name="quality">The quality constraints.</param>
/// <param name="conforming">
/// A value indicating, if the refined mesh should be Conforming Delaunay.
/// </param>
void Refine(QualityOptions quality, bool delaunay);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: afa9255f65ec947029394580abdc1070
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,28 @@
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using Animation.TriangleNet.Geometry;
/// <summary>
/// Interface for polygon triangulation with quality constraints.
/// </summary>
internal interface IQualityMesher
{
/// <summary>
/// Triangulates a polygon, applying quality options.
/// </summary>
/// <param name="polygon">The polygon.</param>
/// <param name="quality">Quality options.</param>
/// <returns>Mesh</returns>
IMesh Triangulate(IPolygon polygon, QualityOptions quality);
/// <summary>
/// Triangulates a polygon, applying quality and constraint options.
/// </summary>
/// <param name="polygon">The polygon.</param>
/// <param name="options">Constraint options.</param>
/// <param name="quality">Quality options.</param>
/// <returns>Mesh</returns>
IMesh Triangulate(IPolygon polygon, ConstraintOptions options, QualityOptions quality);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 6f606e975498d44149054ec8fedf092e
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,26 @@
// -----------------------------------------------------------------------
// <copyright file="ITriangulator.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing
{
using System.Collections.Generic;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Interface for point set triangulation.
/// </summary>
internal interface ITriangulator
{
/// <summary>
/// Triangulates a point set.
/// </summary>
/// <param name="points">Collection of points.</param>
/// <param name="config"></param>
/// <returns>Mesh</returns>
IMesh Triangulate(IList<Vertex> points, Configuration config);
}
}

View file

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 22395c0668d29483bbb5685bf1385ecb
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 7c5150d54e763414287e3bea1fbda552
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View file

@ -0,0 +1,102 @@
// -----------------------------------------------------------------------
// <copyright file="EdgeEnumerator.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Meshing.Iterators
{
using System.Collections.Generic;
using Animation.TriangleNet.Topology;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Enumerates the edges of a triangulation.
/// </summary>
internal class EdgeIterator : IEnumerator<Edge>
{
IEnumerator<Triangle> triangles;
Otri tri = default(Otri);
Otri neighbor = default(Otri);
Osub sub = default(Osub);
Edge current;
Vertex p1, p2;
/// <summary>
/// Initializes a new instance of the <see cref="EdgeIterator" /> class.
/// </summary>
public EdgeIterator(Mesh mesh)
{
triangles = mesh.triangles.GetEnumerator();
triangles.MoveNext();
tri.tri = triangles.Current;
tri.orient = 0;
}
public Edge Current
{
get { return current; }
}
public void Dispose()
{
this.triangles.Dispose();
}
object System.Collections.IEnumerator.Current
{
get { return current; }
}
public bool MoveNext()
{
if (tri.tri == null)
{
return false;
}
current = null;
while (current == null)
{
if (tri.orient == 3)
{
if (triangles.MoveNext())
{
tri.tri = triangles.Current;
tri.orient = 0;
}
else
{
// Finally no more triangles
return false;
}
}
tri.Sym(ref neighbor);
if ((tri.tri.id < neighbor.tri.id) || (neighbor.tri.id == Mesh.DUMMY))
{
p1 = tri.Org();
p2 = tri.Dest();
tri.Pivot(ref sub);
// Boundary mark of dummysub is 0, so we don't need to worry about that.
current = new Edge(p1.id, p2.id, sub.seg.boundary);
}
tri.orient++;
}
return true;
}
public void Reset()
{
this.triangles.Reset();
}
}
}

Some files were not shown because too many files have changed in this diff Show more